• Title/Summary/Keyword: 김화자

Search Result 184, Processing Time 0.027 seconds

Performance Improvement in GMM-based Text-Independent Speaker Verification System (GMM 기반의 문맥독립 화자 검증 시스템의 성능 향상)

  • Hahm Seong-Jun;Shen Guang-Hu;Kim Min-Jung;Kim Joo-Gon;Jung Ho-Youl;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.131-134
    • /
    • 2004
  • 본 논문에서는 GMM(Gaussian Mixture Model)을 이용한 문맥독립 화자 검증 시스템을 구현한 후, arctan 함수를 이용한 정규화 방법을 사용하여 화자검증실험을 수행하였다. 특징파라미터로서는 선형예측방법을 이용한 켑스트럼 계수와 회귀계수를 사용하고 화자의 발성 변이를 고려하여 CMN(Cepstral Mean Normalization)을 적용하였다. 화자모델 생성을 위한 학습단에서는 화자발성의 음향학적 특징을 잘 표현할 수 있는 GMM(Gaussian Mixture Model)을 이용하였고 화자 검증단에서는 ML(Maximum Likelihood)을 이용하여 유사도를 계산하고 기존의 정규화 방법과 arctan 함수를 이용한 방법에 의해 정규화된 점수(score)와 미리 정해진 문턱값과 비교하여 검증하였다. 화자 검증 실험결과, arctan 함수를 부가한 방법이 기존의 방법보다 항상 향상된 EER을 나타냄을 확인할 수 있었다.

  • PDF

A Speaker Pruning Method for Reducing Calculation Costs of Speaker Identification System (화자식별 시스템의 계산량 감소를 위한 화자 프루닝 방법)

  • 김민정;오세진;정호열;정현열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.457-462
    • /
    • 2003
  • In this paper, we propose a speaker pruning method for real-time processing and improving performance of speaker identification system based on GMM(Gaussian Mixture Model). Conventional speaker identification methods, such as ML (Maximum Likelihood), WMR(weighting Model Rank), and MWMR(Modified WMR) we that frame likelihoods are calculated using the whole frames of each input speech and all of the speaker models and then a speaker having the biggest accumulated likelihood is selected. However, in these methods, calculation cost and processing time become larger as the increase of the number of input frames and speakers. To solve this problem in the proposed method, only a part of speaker models that have higher likelihood are selected using only a part of input frames, and identified speaker is decided from evaluating the selected speaker models. In this method, fm can be applied for improving the identification performance in speaker identification even the number of speakers is changed. In several experiments, the proposed method showed a reduction of 65% on calculation cost and an increase of 2% on identification rate than conventional methods. These results means that the proposed method can be applied effectively for a real-time processing and for improvement of performance in speaker identification.

Modified Weighting Model Rank Method for Improving the Performance of Real-Time Text-Independent Speaker Recognition System (실시간 문맥독립 화자인식 시스템의 성능향상을 위한 수정된 가중모델순위 결정방법)

  • Kim Min-Joung;Oh Se-Jin;Suk Su-Young;Chung Ho-Youl;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.107-110
    • /
    • 2002
  • 현재까지 개발된 화자식별 시스템 중 가중모델순위(Weighting Model Rank; WMR)방법을 이용한 화자인식 시스템이 비교적 높은 인식성능을 나타내고 있다. WMR 방법은 각 화자에 대한 프레임 유사도의 순위에 따라 지수함수 가중치로 대치시키는 방법을 사용하고 있으나, 이 방법은 유사도 본래의 변별력이 전체 계산에서 고려되지 않는 문제가 있었다. 이를 해결하기 위해 본 논문에서는 각 화자의 프레임 유사도와 지수함수를 이용한 가중치를 곱한 값을 이용하여 전체 스코어를 계산하도록 하는 수정된 가중모델 순위방법(Modified Weighting Model Rank; MWMR)을 제안한다. 제안한 방법의 유효성을 확인하기 위하여 316명의 화자를 대상으로 하여 인식실험을 실시한 결과, 학습 프레임이 10,000일 경우, MWMR 방법에서 $98.1\%$의 화자 인식률을 얻어 WMR 방법에 비해 약 $2.0\%$의 향상된 인식결과를 보여 제안한 방법의 유효성을 확인할 수 있었다.

  • PDF

A Study on the Speaker Adaptation in HMM Using Variable Number of Branches in Each State (상태당 가지수를 가변시킨 HMM을 이용한 화자적응화에 관한 연구)

  • 김광태;서정일;한유수;홍재근
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.90-95
    • /
    • 1998
  • 본 논문에서는 CHMM인 CDHMM과 ARHMM을 이용하여 화자적응화 하는 방법을 각각 연구하였다. CDHMM에서는 최대사후화확률 추정법에 의하여 각 상태마다 하나의 가 지를 이용하여 화자에 적응시킨다. 본 논문에서는 음성의 다양한 음향학적 특징을 표현하기 위하여 상태마다 여러 개의 가지를 갖는 방법을 제안하였다. 상태마다의 적절한 가지 수를 결정하기 위하여 각 상태에 속하는 프레임 수와 특징 벡터들의 분산행렬의 행렬식값을 이용 하였다. ARHMM에서는 특징벡터로 선형예측계수를 사용하기 때문에 최대사후화확률 추정 법을 사용할 수 없게 된다. 따라서 화자독립모델을 이용하여 적응화자에 대한 음성을 Viterbi 알고리듬으로 상태별로 분할한 후 k-means 알고리듬을 이용하여 각 상태마다 하나 의 가지를 갖는 모델로 적응시키는 방법을 제안하였다.

  • PDF

Realization a Text Independent Speaker Identification System with Frame Level Likelihood Normalization (프레임레벨유사도정규화를 적용한 문맥독립화자식별시스템의 구현)

  • 김민정;석수영;김광수;정현열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.8-14
    • /
    • 2002
  • In this paper, we realized a real-time text-independent speaker recognition system using gaussian mixture model, and applied frame level likelihood normalization method which shows its effects in verification system. The system has three parts as front-end, training, recognition. In front-end part, cepstral mean normalization and silence removal method were applied to consider speaker's speaking variations. In training, gaussian mixture model was used for speaker's acoustic feature modeling, and maximum likelihood estimation was used for GMM parameter optimization. In recognition, likelihood score was calculated with speaker models and test data at frame level. As test sentences, we used text-independent sentences. ETRI 445 and KLE 452 database were used for training and test, and cepstrum coefficient and regressive coefficient were used as feature parameters. The experiment results show that the frame-level likelihood method's recognition result is higher than conventional method's, independently the number of registered speakers.

  • PDF

Robust Correlation Estimation for Rapid Speaker Adaptation (EMAP에 기반한 화자적응을 위한 강인한 상관계수의 예측)

  • 전유진;김동국;김남수
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.113-116
    • /
    • 2000
  • 본 논문에서는 probabilistic principal component analysis (PPCA)를 이용하여 extended maximum a posteriori (EMAP)에 기반한 화자적응 시스템의 성능을 향상시키는 방법을 제시하고자 한다. PPCA는 각각의 hidden Markov model (HMM) 사이의 상관계수 행렬을 강인하게 예측하는데 적용된다. 이렇게 구한 상관계수 행렬은 화자적응 시스템에 사용된다. PPCA는 연산이 효율적이고, EMAP에서 기존에 사용되었던 방법에 비해 향상된 성능을 보여준다. 여러 차례의 음성인식 실험을 통하여, PPCA를 적용한 EMAP은 적은 양의 적응 데이타에서 좋은 성능을 보인다는 것을 확인할 수 있다.

  • PDF

Volume Normalization Method for Multi-Participant Video Conference (다자간 영상통화를 위한 음량정규화 방식)

  • ;Kim, Hyoung-Gook
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.351-352
    • /
    • 2012
  • 다자간 영상통화를 사용할 경우 참여자들의 각기 다른 회의환경과 음성 입력 장치의 사용으로 인해 화자별로 다른 크기의 음량이 발생하게 되어 듣는 화자는 다른 크기의 음량을 청취하면서 불편함을 느끼게 된다. 이러한 문제점을 해결하기 위해 본 논문에서는 다양한 크기의 음량을 일정한 기준으로 조절하는 음량정규화 방식을 제안한다. 제안된 방식은 화자의 평균음량크기를 추정하는 동안 음량정규화 처리하는 적응구간과, 구해진 평균음량크기를 통해 음량정규화 처리하는 유지구간으로 나누어 처리한다.

  • PDF

An Enhanced Text-Prompt Speaker Recognition Using DTW (DTW를 이용한 향상된 문맥 제시형 화자인식)

  • 신유식;서광석;김종교
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.86-91
    • /
    • 1999
  • This paper presents the text-prompt method to overcome the weakness of text-dependent and text-independent speaker recognition. Enhanced dynamic time warping for speaker recognition algorithm is applied. For the real-time processing, we use a simple algorithm for end-point detection without increasing computational complexity. The test shows that the weighted-cepstrum is most proper for speaker recognition among various speech parameters. As the experimental results of the proposed algorithm for three prompt words, the speaker identification error rate is 0.02%, and when the threshold is set properly, false rejection rate is 1.89%, false acceptance rate is 0.77% and verification total error rate is 0.97% for speaker verification.

  • PDF

An Implementation of Security System Using Speaker Recognition Algorithm (화자인식 알고리즘을 이용한 보안 시스템 구축)

  • Shin, You-Shik;Park, Kee-Young;Kim, Chong-Kyo
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.4
    • /
    • pp.17-23
    • /
    • 1999
  • This paper described a security system using text-independent speaker recognition algorithm. Security system is based on PIC16F84 and sound card. Speaker recognition algorithm applied a k-means based model and weighted cepstrum for speech features. As the experimental results, recognition rate of the training data is 100%, non-training data is 99%. Also false rejection rate is 1%, false acceptance rate is 0% and verification mean error rate is 0.5% for registered 5 persons.

  • PDF