• Title/Summary/Keyword: 김화자

Search Result 184, Processing Time 0.023 seconds

Speaker Adaptation Algorithm Based on a Maximization of the Observation Probability (관찰 확률 최대화에 의한 화자 적응 알고리즘)

  • 양태영;신원호;전원석;김지성;김지성;김원구;이충용;윤대희;차일환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.37-42
    • /
    • 1998
  • 본 논문에서는 SCHMM에 적용된 관찰 확률 최대화에 의한 화자 적응 알고리즘을 제안한다. 제안된 알고리즘은 SCHMM의 관찰 확률 밀도들이 새로운 화자의 음성 특징을 잘 표현하지 못하는 경우 인식 성능이 저하되는 것을 막기 위하여, 적응 데이터의 각 특징 벡터들이 최대의 관찰 확률을 가질 수 있도록 관찰 확률 밀도를 결정하는 평균 벡터 μ와 분산 행렬 Σ를 기울기 탐색(gradient search) 알고리즘에 의해 반복적으로 적응시켜 주는 방법이다. SCHMM의 상태 천이 확률 A와 혼합 밀도 계수 C는 관찰 확률 밀도 적응 과정 을 거친 후, 적응 데이터로부터 구한 확률과 기존 확률의 가중 평균을 취하는 과정을 반복 하여 적응시켜 주었다. 제안된 화자 적응 알고리즘을 사용하여 단독음 인식 실험을 수행한 결과, 화자 적응을 수행하지 않았을 때와 비교하여 화자 독립 시스템에서는 평균 9.8%, 남 성 화자 종속 시스템에서는 평균 46.0%, 여성 화자 종속 시스템에서는 평균 52.7%의 인식 률 향상을 보였다.

  • PDF

A Noble Decoding Algorithm Using MLLR Adaptation for Speaker Verification (MLLR 화자적응 기법을 이용한 새로운 화자확인 디코딩 알고리듬)

  • 김강열;김지운;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.190-198
    • /
    • 2002
  • In general, we have used the Viterbi algorithm of Speech recognition for decoding. But a decoder in speaker verification has to recognize same word of every speaker differently. In this paper, we propose a noble decoding algorithm that could replace the typical Viterbi algorithm for the speaker verification system. We utilize for the proposed algorithm the speaker adaptation algorithms that transform feature vectors into the region of the client' characteristics in the speech recognition. There are many adaptation algorithms, but we take MLLR (Maximum Likelihood Linear Regression) and MAP (Maximum A-Posterior) adaptation algorithms for proposed algorithm. We could achieve improvement of performance about 30% of EER (Equal Error Rate) using proposed algorithm instead of the typical Viterbi algorithm.

Improving A Text Independent Speaker Identification System By Frame Level Likelihood Normalization (프레임단위유사도정규화를 이용한 문맥독립화자식별시스템의 성능 향상)

  • 김민정;석수영;정현열;정호열
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.487-490
    • /
    • 2001
  • 본 논문에서는 기존의 Caussian Mixture Model을 이용한 실시간문맥독립화자인식시스템의 성능을 향상시키기 위하여 화자검증시스템에서 좋은 결과를 나타내는 유사도정규화 ( Likelihood Normalization )방법을 화자식별시스템에 적용하여 시스템을 구현하였으며, 인식실험한 결과에 대해 보고한다. 시스템은 화자모델생성단과 화자식별단으로 구성하였으며, 화자모델생성단에서는, 화자발성의 음향학적 특징을 잘 표현할 수 있는 GMM(Gaussian Mixture Model)을 이용하여 화자모델을 작성하였으며. GMM의 파라미터를 최적화하기 위하여 MLE(Maximum Likelihood Estimation)방법을 사용하였다. 화자식별단에서는 학습된 데이터와 테스트용 데이터로부터 ML(Maximum Likelihood)을 이용하여 프레임단위로 유사도를 계산하였다. 계산된 유사도는 유사도 정규화 과정을 거쳐 스코어( SC)로 표현하였으며, 가장 높은 스코어를 가지는 화자를 인식화자로 결정한다. 화자인식에서 발성의 종류로는 문맥독립 문장을 사용하였다. 인식실험을 위해서는 ETRI445 DB와 KLE452 DB를 사용하였으며. 특징파라미터로서는 켑스트럼계수 및 회귀계수값만을 사용하였다. 인식실험에서는 등록화자의 수를 달리하여 일반적인 화자식별방법과 프레임단위유사도정규화방법으로 각각 인식실험을 하였다. 인식실험결과, 프레임단위유사도정규화방법이 인식화자수가 많아지는 경우에 일반적인 방법보다 향상된 인식률을 얻을수 있었다.

  • PDF

Performance Improvement of Speaker Recognition System Using Genetic Algorithm (유전자 알고리즘을 이용한 화자인식 시스템 성능 향상)

  • 문인섭;김종교
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.8
    • /
    • pp.63-67
    • /
    • 2000
  • This paper deals with text-prompt speaker recognition based on dynamic time warping (DTW). The Genetic Algorithm was applied to the creation of reference patterns for suitable reflection of the speaker characteristics, one of the most important determinants in the fields of speaker recognition. In order to overcome the weakness of text-dependent and text-independent speaker recognition, the text-prompt type was suggested. Performed speaker identification and verification in close and open set respectively, hence the Genetic algorithm-based reference patterns had been proven to have better performance in both recognition rate and speed than that of conventional reference patterns.

  • PDF

Performance Comparison by Characteristic Parameter of Speaker Identification System using Neural Networks (신경회로망을 이용한 화자식별 시스템의 특징 파라미터에 따른 성능비교)

  • 정재룡;유재훈;배현;전병희;김성신
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.345-348
    • /
    • 2002
  • 음성인식 기술은 크게 음성인식과 화자인식 기술의 두 가지로 분류된다. 현재는 음성인식 기술이 널리 연구되고 있지만 점차 화자인식 기술의 중요성이 대두되고 있다. 본 논문에서는 화자인식 기술의 한 가지 분류로 임의 화자를 식별하기 위한 화자식별 기술을 연구 대상으로 하고 있으며, 신경회로망을 이용한 화자식별 시스템의 특징 추출 방법을 제시하고 그에 따른 성능을 비교하고 있다. 식별 단계에서 26명의 78개의 음성 샘플을 신경회로망의 역전파 알고리듬을 이용하여 학습하고, 테스트용으로 한 화자의 음성샘플이 사용되어 식별된다. 신경회로망의 입력 변수는 특징 파라미터로 선형예측계수, Mel-주파수 켑스트럼계수와 웨이블릿을 이용한 켑스트럼 계수를 사용하였다. 그 결과로써 화자식별 시스템의 신경회로망 모델2의 입력으로 혼합된 특징 파라미터를 사용한 경우가 다른 파라미터들을 사용한 경우와 비교하여 8.46~21.53%의 차를 가지고 가장 좋은 성능을 나타내었다.

Text-dependent Speaker Verification System in SVAPI 1.0 Environment (SVAPI 1.0 환경에서의 어구 종속 화자 확인 시스템)

  • 김유진
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.401-405
    • /
    • 1998
  • SVAPI 1.0 환경에서의 어구 종속 화자 확인 시스템에 대해 기술한다. 구현된 시스템은 궁극적으로 공중 전화망 응용이 가능한 실용 시스템을 목표로 개발되었으며 이를 위해 SVAPI 위원회에 의해 제안된 SVAPI 1.0을 개발 환경으로 사용하였다. SVAPI는 객체 지향 구조, 클라이언트-서버 및 telephony 환경의 지원등이 특징이며 어플리케이션과 엔진을 독립적으로 개발할 수 있는 이점을 제공한다. 구현된 데모 시스템은 펜티엄 프로세서와 Windows95/NT 4.0 운영체제 그리고 Win16/Win32 API를 통해 제어 가능하며 음성 입력이 가능한 디바이스를 장착한 IBM 호환 PC이다. 화자의 성문 등록은 화자가 동일한 어구를 3회 발성하여 이뤄지며 등록과 확인의 응답속도는 모두 1초 이내이다. 소프트웨어의 구성은 크게 어플리케이션과 어구 종속 화자 확인 엔진으로 구분할 수 있으며 엔진은 끝점 검출 알고리즘, 음성 특징 추출 알고리즘 그리고 연속 HMM 기반의 화자 성문 모델 등록 및 유사도 계산 등을 포함한 확인 알고리즘으로 구성되어 있다. 화자의 성문은이름과 같은 약 3음절 이상의 단어로 등록되고 테스트되었다. 엔진의 객관적인 평가를 위해 전화선을 통해 남자 6명, 여자 3명의 화자로부터 자신의 이름을 각각 40회 발성하여 구축된 음성 데이터 베이스를 사용하였으며 실험 결과 남자는 2.85%, 여자는 2.44%의 EER을 각각 얻었다.

  • PDF

A Speaker Adaptation of Korean Speech Using MLLR (MLLR을 이용한 한국어 음성의 화자 적응)

  • Kim, Tae-Hyeong;Lee, Keon-Ung;Lee, Sang-Ho;Hong, Jae-Keun
    • Annual Conference of KIPS
    • /
    • 2000.10a
    • /
    • pp.251-254
    • /
    • 2000
  • 화자 독립 인식은 훈련 화자와 시험 화자의 차이로 인해 화자 종속의 경우보다 인식률이 떨어진다. 따라서, 인식률을 향상시키기 위해 화자 독립 모델을 화자에 적응시킬 필요가 있다. 본 논문에서는 효과적인 적응 방법인 MLLR(Maximum Likelihood Linear Regression) 적응 방법을 한국어 음성에 적용하여 적응 성능을 향상시켰고, 온라인 상에서 적용 가능하도록 증가 적응 방법을 이용하였다. PBW 445 음성 데이타베이스에 대한 실험 결과, 400개의 적응 데이터를 사용하였을 때, 제안한 방법이 기존의 화자 독립 시스템보다 7.02% 향상된 성능을 보였다.

  • PDF

Speaker Verification Using SVM Kernel with GMM-Supervector Based on the Mahalanobis Distance (Mahalanobis 거리측정 방법 기반의 GMM-Supervector SVM 커널을 이용한 화자인증 방법)

  • Kim, Hyoung-Gook;Shin, Dong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.216-221
    • /
    • 2010
  • In this paper, we propose speaker verification method using Support Vector Machine (SVM) kernel with Gaussian Mixture Model (GMM)-supervector based on the Mahalanobis distance. The proposed GMM-supervector SVM kernel method is combined GMM with SVM. The GMM-supervectors are generated by GMM parameters of speaker and other speaker utterances. A speaker verification threshold of GMM-supervectors is decided by SVM kernel based on Mahalanobis distance to improve speaker verification accuracy. The experimental results for text-independent speaker verification using 20 speakers demonstrates the performance of the proposed method compared to GMM, SVM, GMM-supervector SVM kernel based on Kullback-Leibler (KL) divergence, and GMM-supervector SVM kernel based on Bhattacharyya distance.

Online Adaptation of Continuous Density Hidden Markov Models Based on Speaker Space Model Evolution (화자공간모델 진화에 근거한 연속밀도 은닉 마코프모델의 온라인 적응)

  • Kim Dong Kook;Kim Young Joon;Kim Hyun Woo;Kim Nam Soo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.69-72
    • /
    • 2002
  • 본 논문에서 화자공간모델 evolution에 기반한 continuous density hidden Markov model (CDHMM)의 online 적응에 대한 새로운 기법을 제안한다. 학습화자의 a priori knowledge을 나타내는 화자공간모델은 factor analysis (FA) 또는 probabilistic principal component analysis (PPCA)와 같은 은닉변수모델(latent variable model)에 의해 효과적으로 나타내어진다. 은닉 변수모델은 화자공간모델뿐아니라 CDHMM 파라메터의 ajoint prior분포를 표시함으로, maximum a posteriori(MAP)적응기법에 직접 적용되어진다. 화자공간모델의 hyperparameters와 CDHMM파라메터를 동시에 순차적으로 적응하기 위해 quasi-Bayes (QB)추정 기술에 기반한 online 적응기법을 제안한다. 연속숫자음 인식과 관련된 화자적응 실험을 통해 제안된 기법은 적은 적응데이터에서 좋은 성능을 나타내며, 데이터가 증가함에 따라 성능이 지속적으로 증가함을 보여준다.

  • PDF

Modified HMM Decoder based on Observation Confidence for Speaker Identification (화자인식을 위한 관측신뢰도 기반 변형된 HMM 디코더)

  • Tariquzzaman, Md.;Min, So-Hui;Kim, Jin-Yeong;Na, Seung-Yu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.443-446
    • /
    • 2007
  • 음성신호는 잡음 또는 전송 채널의 특성에 의하여 왜곡되고, 왜곡된 음성은 음성인식 및 화자인식의 성능을 크게 저하시킨다. 이러한 문제점을 극복하기 위해 본 논문에서는 Gaussian mixture model (GMM)에 적용된 신호대잡음비 (SNR)기반 신뢰도 가중 기법[1][2]을 Hidden Markov model(HMM) 디코더에 변형하여 적용하였다. HMM 디코더 변형은 HMM 상태별 관측확률을 논문 [1]에서 제시된 신뢰도로 가중함으로써 이루어졌다. 제안한 방법의 성능을 확인하기 위해 ETRI에서 만든 한국어 화자인식용 휴대폰 음성 DB를 사용하여 문맥종속 화자식별 실험을 하였다. 실험결과 기존 방법에 비해 제안한 방법의 화자인식률이 크게 향상됨을 확인 할 수 있었다.

  • PDF