• Title/Summary/Keyword: 길항제

Search Result 338, Processing Time 0.034 seconds

EFFECT OF EUGENOL AND CAPSAICIN ON THE VOLTAGE-DEPENDENT ION CHANNELS OF TRIGEMINAL AFFERENTS (삼차신경 일차구심 뉴런의 전압의존성 이온통로에 대한 capsaicin과 eugenol의 작용)

  • Kim, Ju-Youn;Park, Sang-Jin;Choi, Gi-Woon;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.407-420
    • /
    • 2000
  • 삼차신경절의 뉴런이 구강악안면영역에서의 촉각, 입각, 온도각 및 통각 등 다양한 감각을 중추신경계로 전달하는 역할을 하는 것은 주지의 사실이다. 이러한 신경전달에 있어서 이온통로는 감각정보를 전달하는데 핵심적인 역할을 수행하며 특히 소디움 통로는 활동전위의 발생에 중요하다. 소디움 통로는 tetrodotoxin-sensitive(TTX-s) 및 tetrodotoxin-resistant(TTX-r) 통로로 나누어지는 데 이 중 TTX-r 통로에 발생되는 tetrodotoxin-resistant sodium current(TTX-r $I_{Na}$)는 capsaicin에 민감한 일차구심신경세포에서 유해자극에 의해 통각신호를 발생시키고 전달하는데 중요하다. 또한 칼슘 통로는 시냅스 전도에 있어서 필수적인 역할을 수행하고 있다 한편 치과영역에서 치수의 진정 목적으로 eugenol이 흔히 사용되고 있다. 그러나 eugenol의 그 작용 기전에 대해서 현재까지 이온 통로에 대한 상세한 결과가 없는 실정이며 최근의 보고에 의하면 eugenol이 capsaicin 수용기를 통하여 감각신경에 대한 억제작용을 나타낸다고 한다. 따라서 본 실험은 eugenol과 capsaicin이 흰쥐의 삼차신경절의 TTX-r $I_{Na}$와 칼슘통로에 어떠한 영향을 미치는지를 알아보고 eugenol이 capsaicin 수용기를 통하여 작용하는지를 검증하고자 시행되었다. 삼차신경절 뉴런은 100~150g의 흰쥐의 삼차신경절로부터 외과적으로 절제하여 통법의 화학적 및 기계적 처리를 통해 단일세포로 분리하였고 이를 whole-cell patch clamp 방법을 이용하여 시행한 바 다음과 같은 결론을 얻었다. 1. 1mM의 dugenol은 흰쥐 삼차신경절 뉴런의 TTX-r $I_{Na}$와 HVA $I_{Ca}$를 억제하였다. 2. $1{\mu}m$의 capsaicin은 흰쥐 삼차신경절 뉴런의 TTX-r $I_{Na}$와 HVA $I_{Ca}$를 억제하였다. 3. Capsazepine은 capsaicin의 HVA $I_{Ca}$에 대한 억제작용을 차단하였다. 4. Capsazepine은 capsaicin의 HVA $I_{Ca}$에 대한 억제작용을 차단하지 못하였다. 결론적으로 eugenol과 capsaicin은 tetrodotoxin-resistant sodium current(TTX-r $I_{Na}$)와 high voltage-activated calcium current(HVA $I_{Ca}$)를 모두 억제하는 것으로 나타났으며, 이러한 작용이 통각의 발생과 시냅스 전달과정을 차단하여 치수 진정 목적으로 많이 사용하는 eugenol의 작용기전으로 판단된다. 한편 capsaicin의 길항제인 capsazepine을 전처치하였을 때에도 eugenol의 HVA $I_{Ca}$에 대한 억제효과는 변화가 없었다. 이와같은 결과로 보아 HVA $I_{Ca}$에 관한 한 eugenol은 capsaicin 수용기를 통하여 나타나지 않는 것으로 사료된다.

  • PDF

Observation of the Incidence of Acrosome Reaction in Human Spermatozoa Treated with Mibefradil as a T-type $Ca^{2+}i$ Channels Inhibitor (T-형 $Ca^{2+}$ 채널 길항제인 Mibefradil을 첨가한 인간 정자의 첨체반응 관찰)

  • Lee, Jae-Ho;Son, Weon-Young;Lee, Jung-Ha;Lee, In-Sun;Kim, Young-Chan;Han, Ching-Tack
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.1
    • /
    • pp.9-14
    • /
    • 2000
  • Objective: The sperm acrosome reaction is a $Ca^{2+}$-dependent exocytotic event that is triggered by adhesion to the mammalian egg's zona pellucida. Previous studies suggested a role of $Ca^{2+}$ channels in acrosome reactions. This study was conducted to investigate the T-type calcium channel is operated in acrosome reaction of human spermatozoa. Method: Human semen samples were obtained from healthy donors with normal criteria. The spermatozoa were divided into five groups: Group 1 were non-treated as a control; Group 2 where spermatozoa were exposed to 5 ${\mu}M$ $Ca^{2+}$ A23187 $(Ca^{2+}i)$; Group 3 where spermatozoa were exposed 5 ${\mu}M$ $Ca^{2+}i$ and mibefradil; Group 4 where spermatozoa were exposed 5 ${\mu}M$ $Ca^{2+}i$ and nifedipine, and Group 5 where spermatozoa were treated with 5 ${\mu}M$ $Ca^{2+}i$ and both of mibefradil and nifedipine. Spermatozoa in all groups were retrieved after incubation for 15 and 30 minutes at $37^{\circ}C$. After staining with PSA-FITC, fluorescence was observed under a fluorescence microscope, and AR was evaluated on a total>100 spermatozoa/side. Result and Conclusion: We observed on acrosome reaction inhibition rate in human spermatozoa the various of concentration of mibefradil, nifedipine. Maximum response was noted with 1.0 ${\mu}M$ mibefradil and the decrease of acrosome reaction inhibition rate 45%. Nifedipine in acrosome reaction inhibition rate was only about 25%. The $Ca^{2+}i$-induced AR of spermatozoa was significantly suppressed by mibefradil. Incidence of the suppression was depending on concentration of mibefradil. Results from the present study suggest that the human spermatozoa possess T-type channel. The observation that reversible inhibitor of T channels in male germ cells provides a new mechanism of contraceptive action.

  • PDF

Mechanism of $Ca^{2+}$ -activated $Cl^-$ Channel Activation by Ginsenosides in Xenopus Oocytes

  • Park, Seok;Jung, Se-Yeon;Park, Seong-Hwan;Ko, Sung-Ryong;Hyewon Rhim;Park, Chul-Seung;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.24 no.4
    • /
    • pp.168-175
    • /
    • 2000
  • Relatively little is known about the signaling mechanism of ginseng saponins (ginsenosides), active ingredients of ginseng, in non-neuronal cells. Here, we describe that ginsenosides utilize a common pathway of receptor-mediated signaling pathway in Xenopus oocytes: increase in intracellular $Ca^{2+}$ concentration via phospholipase C (PLC) and $Ca^{2+}$ mobilization. Ginsenosides induced a marked and robust artivation of $Ca^{2+}$-activated Cl- channels in Xenopus oocytes. The effect of ginsenosides was completely reversible, in a dose-dependent manner with EC$_{50}$ of 4.4 $\mu\textrm{g}$/mi, and specifically blocked by niflumic acid, an inhibitor of $Ca^{2+}$-activated Cl- channel. Intracellular injection of BAPIA abolished the effect of ginsenosides. Intracellular injection of GTP${\gamma}$S also abolished the effect of ginsenosides. The effect of gin senosides on $Ca^{2+}$-activated Cl- currents was greatly reduced by the intracellular injection of heparin, an IP$_3$ receptorantagonist or the pretreatment of PLC inhibitor. These results indicate that ginsenosides activate endogenous $Ca^{2+}$-activated Cl- channels via the activation of PLC and the release of $Ca^{2+}$ from the IP$_3$-sensitive intracellular store following the initial interaction with membrane component(s) from extracellular side. This signaling pathway of ginsenosides may be one of the action mechanisms for the pharmacological effects of ginseng.ts of ginseng.

  • PDF

Contribution of Nociceptin to Alterations in Cerebral Blood Flow Regulation Following Postnatal Exposure to Ethanol in Rats (출생 초기 에탄올 투여 흰쥐의 뇌혈류 조절 변동에 대한 Nociceptin의 관여)

  • Cho, Dong Hwan;Lee, Won Suk
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.157-166
    • /
    • 2013
  • This study aimed to investigate whether nociceptin contributes to the alterations in cerebral blood flow (CBF) regulation following postnatal exposure to ethanol in Sprague-Dawley rats. Animals received ethanol twice a day, 2 hr apart, on postnatal 6, 7 and 8 days. The changes in regional CBF (rCBF) in response to the changes in mean arterial blood pressure were determined at 4-, 8-, and 12-week of age by laser-Doppler flowmetry. Hypotension was induced by the gradual withdrawal of blood from arterial catheter, and the reversal of blood pressure was produced by the reinfusion of blood. Expression of nociceptin-like immunoreactivity was determined in dura mater and cerebral cortex using immunohistochemistry. Postnatal exposure to ethanol almost abolished the autoregulation of rCBF in all age groups. Pretreatment with nociceptin but not with [$Nphe^1$]nociceptin(1-13)$NH_2$, a selective competitive nociceptin receptor antagonist, 5 min prior to ethanol administration preserved the autoregulation of rCBF in all age groups. Postnatal exposure to ethanol markedly increased the expressions of nociceptin-like immunoreactivity in the dura mater and cerebral cortex, both of which were significantly inhibited by pretreatment with 7-nitroindazole monosodium salt as well as aminoguanidine 5 min prior to ethanol administration in all age groups. The values of arterial blood gas analysis were not significantly different from the basal levels in all groups. These results suggest that nociceptin deeply contributes to the compensatory mechanisms for the nitric oxide-dependent alterations in CBF autoregulation following postnatal exposure to ethanol.

Inhibitory Effects of Scopoletin in Collagen-induced Human Platelet Aggregation (콜라겐으로 유도한 사람 혈소판 응집에 미치는 Scopoletin의 억제 효과)

  • Kwon, Hyuk-Woo;Shin, Jung-Hae;Park, Chang-Eun;Lee, Dong-Ha
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.1
    • /
    • pp.34-41
    • /
    • 2019
  • Platelet aggregation is essential for the formation of a hemostatic plug in the case of blood vessel damage. On the other hand, excessive platelet aggregation may cause cardiovascular disorders, such as thrombosis, atherosclerosis, and myocardial infarction. Scopoletin, which found in the root of plants in the genus Scopolia or Artemisia, has anti-coagulation and anti-malaria effects. This study examined the effects of scopoletin on human platelet aggregation induced by collagen. Scopoletin had anti-platelet effects via the down-regulation of thromboxane $A_2$ ($TXA_2$) production and intracellular $Ca^{2+}$ mobilization ($[Ca^{2+}]_i$), which are aggregation-inducing molecules produced in activated platelets. On the other hand, scopoletin increased both the cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) levels, which are known as intracellular $Ca^{2+}$-antagonists and aggregation-inhibiting molecules. In particular, scopoletin increased the potently cAMP level more than cGMP, which led to suppressed fibrinogen binding to ${\alpha}IIb/{\beta}_3$ in collagen-induced human platelet aggregation. In addition, scopoletin inhibited collagen-elevated adenosine triphosphate (ATP) release in a dose-dependent manner. The results suggest that aggregation amplification through granule secretion is inhibited by scopoletin. Therefore, scopoletin has potent anti-platelet effects and may have potential for the prevention of platelet-derived vascular diseases.

Effect of an Ethanol Extract of Cassia obtusifolia Seeds on Alcohol-induced Memory Impairment (결명자 에탄올 추출물이 알코올로 유도로 유도한 기억 장애에 미치는 영향)

  • Kwon, Huiyoung;Cho, Eunbi;Jeon, Jieun;Lee, Young Choon;Kim, Dong Hyun
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.564-569
    • /
    • 2019
  • Heavy drinking disrupts the nervous system by activation of GABA receptors and inhibition of glutamate receptors, thereby preventing short-term memory formation. Degradation of cognition by alcohol induces blackouts, and it can lead to alcoholic dementia if repeated. Therefore, drugs need to be developed to prevent alcohol-induced blackout. In this study, we confirmed the effect of an ethanol extract of Cassia obtusifolia seeds (COE) on alcohol-induced memory impairment. The effects of COE and ethanol on cognitive functions mice were examined using the passive avoidance and Y-maze tests. The manner in which alcohol affects long-term potentiation (LTP) in relation to the learning and memory was confirmed by electrophysiology performed on mouse hippocampal slices. We also measured N-methyl-D-aspartate (NMDA) receptor-mediated field excitatory synapses (fEPSPs), which have a known association with cognitive impairment caused by ethanol. Ethanol caused memory impairments in passive avoidance and Y-maze tests. COE prevented these ethanol-induced memory impairments in these tests. Ethanol also blocked LTP induction in the mouse hippocampus, and COE prevented this ethanol-induced LTP deficit. Ethanol decreased NMDA receptor-mediated fEPSPs in the mouse hippocampus, and this decrease was prevented by COE. These results suggest that COE might be useful in preventing alcohol-induced neurological dysfunctions, including blackouts.

Biological Control of Stem Rot of Pepper caused by Sclerotium rolfsii using by Bacillus amyloliquefaciens KBC1009 (길항세균 Bacillus amyloliquefaciens KBC1009를 이용한 고추 흰비단병의 생물학적 방제)

  • Kang, Jae-Gon;Lee, Young-Ui;Park, Jeong-chan;Jeong, Yoon-Woo;Park, Chang-Seuk;Kang, Hoon-Serg
    • Journal of agriculture & life science
    • /
    • v.50 no.4
    • /
    • pp.27-34
    • /
    • 2016
  • Sclerotium rolfsii is a well known broad host range soil borne plant pathogenic fungus and caused serious damage to various vegetable crops. To develop an effective biological control agent for S. rolfsii, an isolate which showed strong inhibitory effect on the mycelial growth of S. rolfsii was selected among the antagonistic bacterial isolates collected from vinyl-house soil. The bacterial isolate was identified as Bacillus amyloliquefaciens KBC1009 based on the morphological, physiological characteristics and by 16S rRNA sequence analysis. The growth conditions for B. amyloliquefaciens KBC1009 were optimized in LB media(pH7) by culturing at 30℃ for 72 hrs. Glucose and yeast extract were confirmed as the best carbon and nitrogen sources, respectively. In order to test the inhibitory effect of B. amyloliquefaciens KBC1009 to stem rot of pepper, green house experiment was conducted. Drench of 1/500 diluted bacterial suspension of B. amyloliquefaciens KBC1009(5×108 cfu/ml) to each pepper plant 3 times with 10 days interval showed 66.7% control effectiveness. These results suggest that B. amyloliquefaciens KBC1009 is one of promising biocontrol agent to control stem rot caused by Sclerotium rolfsii.

Development of Biofungicide Using Bacillus sp. KBC1004 for the Control of Anthracnose of Red Pepper (길항세균 Bacillus sp. KBC1004를 이용한 고추탄저병의 생물학적 방제제 개발)

  • Kang, Hoon-Serg;Kang, Jae-Gon;Park, Jeong-Chan;Lee, Young-Ui;Jeong, Yoon-Woo;Kim, Jeong-Jun;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.208-214
    • /
    • 2015
  • To develop an effective biopesticide to control pepper anthracnose disease, an isolate which showed strong inhibitory effect on the mycelial growth and conidial germination of Colletotrichum acutatum was selected among the antagonistic bacterial isolates collected from pepper grown soil. The bacterial isolate was identified as Bacillus sp. KBC1004 using 16S rRNA sequence analysis. The liquid culture of KBC1004 was freeze-dried and formulated as a wettable powder(WP). The wettable powder form of KBC1004 required at least 24 hours to activate and to inhibit the conidial germination of C. acutatum. In vitro bioassay using the detached green pepper fruits, biocontrol activity of the WP was not recognizable in simultaneous inoculation, but significant disease suppression was observed pre-treatment (24 hr) of the WP before pathogen inoculation. In field experiment, 4 times foliar applications of the 1/500 diluted wettable powder from the end of June showed great control efficacy similar to that of the chemical fungicide application. These results suggest that the formulated WP product could be an alternative mean to control of pepper anthracnose disease in environmentally friendly farming practices.

Interaction of Herbicide Mixtures for Effective Control of Annual and Perennial Paddy Weeds (1년생(一年生) 및 다년생(多年生) 답잡초(沓雜草)의 방제(防除)를 위한 혼합제초제(混合除草劑)의 상호작용(相互作用))

  • Shim, I.S.;Oh, Y.B.;Bae, S.H.;Pyon, J.Y.
    • Korean Journal of Weed Science
    • /
    • v.4 no.2
    • /
    • pp.188-193
    • /
    • 1984
  • Interactions of herbicide mixtures were assessed for effective control of annual and perennial paddy weeds by isobole method(90% control) using Echinochloa crusgalli Beauv. var. oryzicola Ohwi, Scirpus hotarui Ohwi, Sagittaria pygrnaea Miquel, and Cyperus serotinus Rottb which are dominated in the paddy field of Korea. Mixture of butachlor and pyrazolate showed additive effect for control of E. crusgalli Beauv. var. oryzicola Ohwi, S. hotarui Ohwi and C. serotinus Rottb, but synergistic effect for control of S. pygmaea Miquel. Interaction of bifenox and bromobutamide showed synergistic effect to E. crusgalli Beauv. var oryzicola Ohwi and C. Serotinus Rottb, but slightly antagonistic effect to S. pygmaeo Miquel.

  • PDF

A PCR Denaturing Gradient Gel Electrophoresis (DGGE) Analysis of Intestinal Microbiota in Gastric Cancer Patients Taking Anticancer Agents (PCR-DGGE를 통해 분석한 항암치료에 따른 장내 미생물 변화)

  • Yu, Sun Nyoung;Ahn, Soon Cheol
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1290-1298
    • /
    • 2017
  • Intestinal microbiota is an important factor in the development of immune defense mechanisms in the human body. Treatments with anticancer agents, such as 5-Fluorouracil, Cisplatin, and Oxaliplatin, significantly change the temporal stability and environment of intestinal bacterial flora. The anticancer treatment chemotherapy often depresses the immune system and induces side effects, such as diarrhea. This study investigated the effects anticancer agents have on the intestinal microbial ecosystems of patients with gastric cancer. An exploration of the diversity and temporal stability of the dominant bacteria was undertaken using a DGGE with the 16S rDNA gene. Researchers collected stool samples from patients zero, two and eight weeks after the patients started chemotherapy. After the treatment with anticancer agents, the bacteria strains Sphingomonas paucimobilis, Lactobacillus gasseri, Parabacteroides distasonis and Enterobacter sp. increased. This study focused on the survival of the beneficial microorganisms Bifidobacterium and Lactobacillus in the intestines of cancer patients. The administration of antigastric cancer agents significantly decreased Lactobacillus and Bifidobacterium populations and only moderately affected the main bacterial groups in the patients' intestinal ecosystems. The results showed the versatility of a cultivation independent-PCR DGGE analysis regarding the visual monitoring of ecological diversity and anticancer agent-induced changes in patients' complex intestinal microbial ecosystems.