DOI QR코드

DOI QR Code

Contribution of Nociceptin to Alterations in Cerebral Blood Flow Regulation Following Postnatal Exposure to Ethanol in Rats

출생 초기 에탄올 투여 흰쥐의 뇌혈류 조절 변동에 대한 Nociceptin의 관여

  • Cho, Dong Hwan (Department of Pharmacology, Pusan National University School of Medicine) ;
  • Lee, Won Suk (Department of Pharmacology, Pusan National University School of Medicine)
  • 조동환 (부산대학교 의학전문대학원 약리학교실) ;
  • 이원석 (부산대학교 의학전문대학원 약리학교실)
  • Received : 2013.01.16
  • Accepted : 2013.01.24
  • Published : 2013.02.28

Abstract

This study aimed to investigate whether nociceptin contributes to the alterations in cerebral blood flow (CBF) regulation following postnatal exposure to ethanol in Sprague-Dawley rats. Animals received ethanol twice a day, 2 hr apart, on postnatal 6, 7 and 8 days. The changes in regional CBF (rCBF) in response to the changes in mean arterial blood pressure were determined at 4-, 8-, and 12-week of age by laser-Doppler flowmetry. Hypotension was induced by the gradual withdrawal of blood from arterial catheter, and the reversal of blood pressure was produced by the reinfusion of blood. Expression of nociceptin-like immunoreactivity was determined in dura mater and cerebral cortex using immunohistochemistry. Postnatal exposure to ethanol almost abolished the autoregulation of rCBF in all age groups. Pretreatment with nociceptin but not with [$Nphe^1$]nociceptin(1-13)$NH_2$, a selective competitive nociceptin receptor antagonist, 5 min prior to ethanol administration preserved the autoregulation of rCBF in all age groups. Postnatal exposure to ethanol markedly increased the expressions of nociceptin-like immunoreactivity in the dura mater and cerebral cortex, both of which were significantly inhibited by pretreatment with 7-nitroindazole monosodium salt as well as aminoguanidine 5 min prior to ethanol administration in all age groups. The values of arterial blood gas analysis were not significantly different from the basal levels in all groups. These results suggest that nociceptin deeply contributes to the compensatory mechanisms for the nitric oxide-dependent alterations in CBF autoregulation following postnatal exposure to ethanol.

본 연구는 Sprague-Dawley계 숫쥐에서 출생 초기 에탄올에의 노출에 의한 성장 후 뇌혈류 자가조절의 변동을 관찰하고 이러한 변동에 대한 nociceptin의 관여를 관찰하고자 하였다. 실험동물에게 에탄올 2.5 g/kg을 생후 6, 7 및 8일의 3일 동안 2시간 간격으로 1일 2회 피하 주사하였다. 주령 4, 8 및 12주 시기에 단계적 출혈에 의한 저혈압 및 혈액 재주입에 의한 혈압 상승시의 평균동맥혈압의 변동에 따른 국소 뇌혈류 변동을 laser-Doppler flowmetry 방법으로 측정하였고, 경막과 대뇌피질에서 nociceptin-유사 면역반응력의 발현을 면역조직화학법으로 측정하였다. 출생 초기 에탄올 투여는 4, 8 및 12주령 모두에서 국소 뇌혈류 자가조절 기능을 거의 소실시켰다. 에탄올 투여 전에 nociceptin을 전처치한 군에서는 모든 연령군에서 국소 뇌혈류 자가조절 기능이 보존되었으나, nociceptin 수용체 선택적 경쟁적 길항제인 [$Nphe^1$]nociceptin(1-13)$NH_2$를 전처치한 군에서는 보존되지 아니하였다. 출생 초기 에탄올 투여에 의하여 경막 내 nociceptin-유사 면역반응력이 모든 연령군에서 현저히 증가하였고, 7-nitroindazole (7-NINA) 전처치뿐만 아니라 aminoguanidine 전처치에 의하여 모든 주령에서 유의하게 억제되었다. 출생 초기 에탄올 투여에 의하여 대뇌피질 내 nociceptin-유사 면역반응력이 모든 연령군에서 현저히 증가하였고, 7-NINA 전처치와 aminoguanidine 전처치에 의하여 모든 주령에서 유의하게 억제되었다. 모든 실험군의 동맥혈가스분석 결과는 실험 전, 중 및 후에 유의한 차이를 보이지 아니하였다. 이상의 결과로 보아 출생 초기 에탄올 투여는 성장 후 뇌혈류 자가조절에 변동을 초래하고, 이에 대한 보상기전으로서 nociceptin의 발현이 증가하는데, 여기에는 nitric oxide가 깊이 관여하는 것으로 생각된다.

Keywords

References

  1. Armstead, W. M. 1999. Nociceptin/orphanin FQ dilates pial arteries by KATP and Kca channel activation. Brain Res 835, 315-323. https://doi.org/10.1016/S0006-8993(99)01623-6
  2. Berger, R. and Garnier, Y. 2000. Perinatal brain injury. J Perinat Med 28, 261-285.
  3. Black, S. M., Bedolli, M. A., Martinez, S., Bristow, J. D., Ferriero, D. M. and Soifer, S. J. 1995. Expression of nitric oxide synthase corresponds to regions of selective vulnerability to hypoxia-ischaemia in the developing rat brain. Neurobiol Dis 2, 145-155. https://doi.org/10.1006/nbdi.1995.0016
  4. Boado, R. J. and Pardridge, W. M. 1994. Differential expression of ${\alpha}$-actin mRNA and immunoreactive protein in brain microvascular pericytes and smooth muscle cells. J Neurosci Res 39, 430-435. https://doi.org/10.1002/jnr.490390410
  5. Bode, H. and Bubl, R. 1991. Brain circulation in residual cerebral damage. A Doppler ultrasound study. Monatsschr Kinderheilkd 139, 144-510.
  6. Cavazzuti, M. and Duffy, T. E. 1982. Regulation of local cerebral blood flow in normal and hypoxic newborn dogs. Ann Neurol 11, 247-257. https://doi.org/10.1002/ana.410110304
  7. Clarren, S. K., Alvord, E. C. Jr., Sumi, S. M., Streissguth, A. P. and Smith, D. W. 1978. Brain malformations related to prenatal exposure to ethanol. J Pediatr 92, 64-67. https://doi.org/10.1016/S0022-3476(78)80072-9
  8. Connor, M., Yeo, A. and Henderson, G. 1996. The effect of nociceptin on $Ca^{2+}$ channel current and intracellular $Ca^{2+}$ in the SH-SY5Y human neuroblastoma cell line. Br J Pharmacol 118, 205-207. https://doi.org/10.1111/j.1476-5381.1996.tb15387.x
  9. Dammann, O. and Leviton, A. 1997. The role of perinatal brain damage in developmental disabilities: An epidemiologic perspective. Ment Retard Dev Disabil Res Rev 3, 13-21. https://doi.org/10.1002/(SICI)1098-2779(1997)3:1<13::AID-MRDD3>3.0.CO;2-Y
  10. Dobbing, J. and Sands, J. 1979. Comparative aspects of the brain growth spurt. Early Hum Dev 3, 79-83. https://doi.org/10.1016/0378-3782(79)90022-7
  11. Faber, E. S., Chambers, J. P., Evans, R. H. and Henderson, G. 1996. Depression of glutamatergic transmission by nociceptin in the neonatal rat hemisected spinal cord preparation in vitro. Br J Pharmacol 119, 189-190. https://doi.org/10.1111/j.1476-5381.1996.tb15969.x
  12. Ferriero, D. M., Holtzman, D. M., Black, S. M. and Sheldon, R. A. 1996. Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury. Neurobiol Dis 3, 64-71. https://doi.org/10.1006/nbdi.1996.0006
  13. Fukuda, K., Kato, S., Mori, K., Nishi, M., Takeshima, H., Iwabe, N., Miyata, T., Houtani, T. and Sugimoto, T. 1994. cDNA cloning and regional distribution of a novel member of the opioid receptor family. FEBS Lett 343, 42-46. https://doi.org/10.1016/0014-5793(94)80603-9
  14. Fukuda, S., Kato, T., Kuwabara, S., Kato, I., Futamura, M. and Togari, H. 2005. The ratio of flow velocities in the middle cerebral and internal carotid arteries for the prediction of cerebral palsy in term neonates. J Ultrasound Med 24, 149-153.
  15. Gleason, C. A., Iida, H., Hotchkiss, K. J., Northington, F. J. and Traystman, R. J. 1997. Newborn cerebrovascular responses after first trimester moderate maternal ethanol exposure in sheep. Pediatr Res 42, 39-45. https://doi.org/10.1203/00006450-199707000-00007
  16. Goodlett, C. R. and West, J. R. 1992. Fetal Alcohol Effects: Rat model of alcohol exposure during the brain growth spurt, pp. 45-75. In: Zagon, I. S. and Slotkin, T. A. (eds.), Maternal substance abuse and the developing nervous system. Academic Press: San Diego, USA.
  17. Goodlett, C. R., Marcussen, B. L. and West, J. R. 1990. A single day of alcohol exposure during the brain growth spurt induces brain weight restriction and cerebellar Purkinje cell loss. Alcohol 7, 107-114. https://doi.org/10.1016/0741-8329(90)90070-S
  18. Greisen, G. 1992. Effect of cerebral blood flow and cerebrovascular autoregulation on the distribution, type and extent of cerebral injury. Brain Pathol 2, 223-228. https://doi.org/10.1111/j.1750-3639.1992.tb00695.x
  19. Grether, J. K., Cummins, S. K. and Nelson, K. B. 1992. The California cerebral palsy project. Paediatr Perinat Epidemiol 6, 339-351. https://doi.org/10.1111/j.1365-3016.1992.tb00774.x
  20. Griffiths, M. J., Messent, M., MacAllister, R. J. and Evans, T. W. 1993. Aminoguanidine selectively inhibits inducible nitric oxide synthase. Br J Pharmacol 110, 963-968. https://doi.org/10.1111/j.1476-5381.1993.tb13907.x
  21. Gu, H., Hu, D., Hong, X. R., Li, W., Cui, Y., Hui, N. and Sha, J. Y. 2003. Changes of hypothalamus and peripheral orphanin in fetal rats with intrauterine ischemia and hypoxia. Zhonghua Fu Chan Ke Za Zhi 38, 683-684.
  22. Guo, Y., Ward, M. E., Beasjours, S., Mori, M. and Hussain, S. N. 1997. Regulation of cerebellar nitric oxide production in response to prolonged in vivo hypoxia. J Neurosci Res 49, 89-97. https://doi.org/10.1002/(SICI)1097-4547(19970701)49:1<89::AID-JNR10>3.0.CO;2-#
  23. Henderson, G. and McKnight, A. T. 1997. The orphan opioid receptor and its endogenous ligand - nociceptin/orphanin FQ. Trends Pharmacol Sci 18, 293-300.
  24. Higuchi, Y., Hattori, H., Hattori, R. and Furushom K. 1996. Increased neurons containing neuronal nitric oxide synthase in the brain of a hypoxic-ischemic neonatal rat model. Brain Dev 18, 369-375. https://doi.org/10.1016/0387-7604(96)00019-8
  25. Hou, M., Uddman, R., Tajti, J. and Edvinsson, L. 2003. Nociceptin immunoreactivity and receptor mRNA in the human trigeminal ganglion. Brain Res 964, 179-186. https://doi.org/10.1016/S0006-8993(02)03927-6
  26. Hu, J. and Van Eldik, L. J. 1996. $S100{\beta}$ induces apoptotic cell death in cultured astrocytes via a nitric oxide-dependent pathway. Biochim Biophysics Acta 1313, 239-245. https://doi.org/10.1016/0167-4889(96)00095-X
  27. Huttenlocher, P. R., de Courten, C., Garey, L. J. and Van der Loos, H. 1982. Synaptogenesis in human visual cortex- evidence for synapse elimination during normal development. Neurosci Lett 33, 247-252. https://doi.org/10.1016/0304-3940(82)90379-2
  28. Ikonomidou, C., Bittigau, P., Ishimaru, M. J., Wozniak, D. F., Koch, C., Genz, K., Price, M. T., Stefovska, V., Horster, F., Tenkova, T., Dikranian, K. and Olney, J. W. 2000. Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 287, 1056-1060. https://doi.org/10.1126/science.287.5455.1056
  29. Jones, K. L. and Smith, D. W. 1973. Recognition of the fetal alcohol syndrome in early infancy. Lancet 2, 999-1001.
  30. Kimura, K. A., Parr, A. M. and Brien, J. F. 1996. Effect of chronic maternal ethanol administration on nitric oxide synthase activity in the hippocampus of the mature fetal guinea pig. Alcohol Clin Exp Res 20, 948-953. https://doi.org/10.1111/j.1530-0277.1996.tb05276.x
  31. Kruse, J. 1984. Alcohol use during pregnancy. Am Fam Physician 29, 199-203.
  32. Lachowicz, J. E., Shen, Y., Monsma, F. J. Jr. and Sibley, D. R. 1995. Molecular cloning of a novel G protein-coupled receptor related to the opiate receptor family. J Neurochem 64, 34-40.
  33. Lassen, N. A. 1964. Autoregulation of cerebral blood flow. Circ Res 14/15(Suppl 1), 201-204.
  34. Leech, R. W. and Alvord, E. C. Jr. 1977. Anoxic-ischemic encephalopathy in the human neonatal period. The significance of brain stem involvement. Arch Neurol 34, 109-113. https://doi.org/10.1001/archneur.1977.00500140063013
  35. Lou, H. C. 1988. The "lost autoregulation hypothesis" and brain lesions in the newborn - an update. Brain Dev 10, 143-146. https://doi.org/10.1016/S0387-7604(88)80016-0
  36. Meunier, J. C. 1997. Nociceptin/orphanin FQ and the opioid receptor-like ORL1 receptor. Eur J Pharmacol 340, 1-15. https://doi.org/10.1016/S0014-2999(97)01411-8
  37. Meunier, J. C., Mollereau, C., Toll, L., Suaudeau, C., Moisand, C., Alvinerie, P., Butour, J. L., Guillemot, J. C., Ferrara, P., Monsarrat, B., Mazarguil, H., Vassart, G., Parmentier, M. and Costentin, J. 1995. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377, 532-535. https://doi.org/10.1038/377532a0
  38. Meyrick, B. and Reid, L. 1978. The effect of continued hypoxia on rat pulmonary arterial circulation. An ultrastructural study. Lab Invest 38, 188-200.
  39. Miller, M. W. 1988. Effect of prenatal exposure to ethanol on the development of cerebral cortex: I. Neuronal generation. Alcohol Clin Exp Res 12, 440-444. https://doi.org/10.1111/j.1530-0277.1988.tb00223.x
  40. Mollereau, C., Simons, M. J., Soularue, P., Liners, F., Vassart, G., Meunier, J. C. and Parmentier, M. 1996. Structure, tissue distribution, and chromosomal localization of the prepronociceptin gene. Proc Natl Acad Sci USA 93, 8666-8670. https://doi.org/10.1073/pnas.93.16.8666
  41. Molliver, M. E., Kostovic, I. and van der Loos, H. 1973. The development of synapses in cerebral cortex of the human fetus. Brain Res 50, 403-407. https://doi.org/10.1016/0006-8993(73)90741-5
  42. Morikawa, H., Fukuda, K., Mima, H., Shoda, T., Kato, S. and Mori, K. 1998. Nociceptin receptor-mediated $Ca^{2+}$ channel inhibition and its desensitization in NG108-15 cells. Eur J Pharmacol 351, 247-252. https://doi.org/10.1016/S0014-2999(98)00306-9
  43. Nehls, V. and Drenckhahn, D. 1993. The versatility of microvascular pericytes: from mesenchyme to smooth muscle? Histochemistry 99, 1-12. https://doi.org/10.1007/BF00268014
  44. Nelson, R. M., Calo, G., Guerrini, R., Hainsworth, A. H., Green, A. R. and Lambert, D. G. 2000. Nociceptin/orphanin FQ inhibits ischaemia-induced glutamate efflux from rat cerebrocortical slices. Neuroreport 11, 3689-3692. https://doi.org/10.1097/00001756-200011270-00020
  45. Nicol, B., Lambert, D. G., Rowbotham, D. J., Smart, D. and McKnight, A. T. 1996. Nociceptin induced inhibition of $K^+$ evoked glutamate release from rat cerebrocortical slices. Br J Pharmacol 119, 1081-1083. https://doi.org/10.1111/j.1476-5381.1996.tb16007.x
  46. Pantazis, N. J., West, J. R. and Dai, D. 1998. The nitric oxide-cyclic GMP pathway plays an essential role in both promoting cell survival of cerebellar granule cells in culture and protecting the cells against ethanol neurotoxicity. J Neurochem 70, 1826-1838.
  47. Phillips, D. E., Cummings, J. D. and Wall, K. A. 2000. Prenatal alcohol exposure decreases the number of nitric oxide synthase positive neurons in rat superior colliculus and periaqueductal gray. Alcohol 22, 75-84. https://doi.org/10.1016/S0741-8329(00)00108-7
  48. Rice. J. E. 3rd, Vannucci, R. C. and Brierley, J. B. 1981. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9, 131-141. https://doi.org/10.1002/ana.410090206
  49. Richardson, B. S., Patrick, J. E., Bousquet, J., Homan, J. and Brien, J. F. Cerebral metabolism in fetal lamb after maternal infusion of ethanol. Am J Physiol 249, R505-R509.
  50. Roland, E. H. and Hill, A. 1997. How important is perinatal asphyxia in the causation of brain injury? Ment Retard Dev Disabil Res Rev 3, 22-27. https://doi.org/10.1002/(SICI)1098-2779(1997)3:1<22::AID-MRDD4>3.0.CO;2-Z
  51. Silva, M. T., Rose, S., Hindmarsh, J. G., Aislaitner, G., Gorrod, J. W., Moore, P. K., Jenner, P. and Marsden, C. D. 1995. Increased striatal dopamine efflux in vivo following inhibition of cerebral nitric oxide synthase by the novel monosodium salt of 7-nitro indazole. Br J Pharmacol 114, 257-258. https://doi.org/10.1111/j.1476-5381.1995.tb13219.x
  52. Taudorf, K. and Vorstrup, S. 1989. Cerebral blood flow abnormalities in cerebral palsied children with a normal CT scan. Neuropediatrics 20, 33-40. https://doi.org/10.1055/s-2008-1071262
  53. Volpe, J. J., Herscovitch, P., Perlman, J. M., Kreusser, K. L. and Raichle, M. E. 1985. Positron emission tomography in the asphyxiated term newborn: parasagittal impairment of cerebral blood flow. Ann Neurol 17, 287-296. https://doi.org/10.1002/ana.410170312
  54. Wadhwa, P. D., Sandman, C. A. and Garite, T. J. 2001. The neurobiology of stress in human pregnancy: implications for prematurity and development of the fetal central nervous system. Prog Brain Res 133, 131-142. https://doi.org/10.1016/S0079-6123(01)33010-8
  55. West, J. R., Chen, W. J. and Pantazis, N. J. 1994. Fetal alcohol syndrome: the vulnerability of the developing brain and possible mechanisms of damage. Metab Brain Dis 9, 291-322. https://doi.org/10.1007/BF02098878
  56. West, J. R., Hamre, K. M. and Cassell, M. D. 1986. Effects of ethanol exposure during the third trimester equivalent on neuron number in rat hippocampus and dentate gyrus. Alcohol Clin Exp Res 10, 190-197. https://doi.org/10.1111/j.1530-0277.1986.tb05070.x
  57. Yamada, K., Tsuzura, S. and Matsuda, H. 1995. Brain MRI and single photon emission computed tomography in severe athetotic cerebral palsy: a comparative study with mental and motor disorders. No To Hattatsu 27, 269-275.
  58. Yamamoto, S., Nishizawa, S., Tsukada, H., Kakiuchi, T., Yokoyama, T., Ryu, H. and Uemura, K. 1998. Cerebral blood flow autoregulation following subarachnoid hemorrhage in rats: chronic vasospasm shifts the upper and lower limits of the autoregulatory range toward higher blood pressures. Brain Res 782, 194-201. https://doi.org/10.1016/S0006-8993(97)01278-X
  59. Yu, T. P. and Xie, C. W. 1998. Orphanin FQ/nociceptin inhibits synaptic transmission and long-term potentiation in rat dentate gyrus through postsynaptic mechanisms. J Neurophysiol 80, 1277-1284.
  60. Zou, J. Y., Martinez, D. B., Neafsey, E. J. and Collins, M. A. 1996. Binge ethanol-induced brain damage in rats: effect of inhibitors of nitric oxide synthase. Alcohol Clin Exp Res 20, 1406-1411. https://doi.org/10.1111/j.1530-0277.1996.tb01141.x