• Title/Summary/Keyword: 기후효과

Search Result 1,098, Processing Time 0.034 seconds

Agrometeorological Early Warning System: A Service Infrastructure for Climate-Smart Agriculture (농업기상 조기경보시스템 설계)

  • Yun, Jin I.
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2014.10a
    • /
    • pp.25-48
    • /
    • 2014
  • Increased frequency of climate extremes is another face of climate change confronted by humans, resulting in catastrophic losses in agriculture. While climate extremes take place on many scales, impacts are experienced locally and mitigation tools are a function of local conditions. To address this, agrometeorological early warning systems must be place and location based, incorporating the climate, crop and land attributes at the appropriate scale. Existing services often lack site-specific information on adverse weather and countermeasures relevant to farming activities. Warnings on chronic long term effects of adverse weather or combined effects of two or more weather elements are seldom provided, either. This lecture discusses a field-specific early warning system implemented on a catchment scale agrometeorological service, by which volunteer farmers are provided with face-to-face disaster warnings along with relevant countermeasures. The products are based on core techniques such as scaling down of weather information to a field level and the crop specific risk assessment. Likelihood of a disaster is evaluated by the relative position of current risk on the standardized normal distribution from climatological normal year prepared for 840 catchments in South Korea. A validation study has begun with a 4-year plan for implementing an operational service in Seomjin River Basin, which accommodates over 60,000 farms and orchards. Diverse experiences obtained through this study will certainly be useful in planning and developing the nation-wide disaster early warning system for agricultural sector.

  • PDF

Impact of Climate Change on Yield and Canopy Photosynthesis of Soybean (RCP 8.5 기후변화 조건에서 콩의 군락 광합성 및 수량 반응 평가)

  • Wan-Gyu, Sang;Jae-Kyeong, Baek;Dongwon, Kwon;Jung-Il, Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.275-284
    • /
    • 2022
  • Changes in air temperature, CO2 concentration and precipitation due to climate change are expected to have a significant impact on soybean productivity. This study was conducted to evaluate the climate change impact on growth and development of determinate soybean cultivar in the southern parts of Korea. The high temperature during vegetative period, which does not accompany the increase of CO2 concentration, increased the canopy photosynthetic rate in soybean, but after flowering, the high temperature above the optimal ranges interrupts the photosynthetic metabolism. In yield and yield components, high temperature reduced both the pod and seed number and single seed weight, resulting in a reduction of total seed yield. On the other hand, the increase in CO2 concentration dramatically increased the canopy photosynthetic rate over the whole growth period. In addition, high CO2 concentration increased the number of pods and seeds, which had a positive effect on total seed yield. Under concurrent elevation of air temperature and CO2 concentration, canopy photosynthesis increased significantly, but enhanced canopy photosynthesis did not lead to an increase in soybean seed yield. The increase in biomass and branch by enhanced canopy photosynthesis seems to be attributed to an increase in the total number of pods and seeds per plant, which compensates for the negative effects of high temperature on pod development. However, Single seed weight tended to decrease rapidly by high temperature, regardless of CO2 concentration level. Elevated CO2 concentration did not compensate for the poor distribution of assimilations from source to sink caused by high temperature. These results show that the damage of future soybean yield and quality is closely related to high temperature stress during seed filling period.

GIS-based Estimation of Climate-induced Soil Erosion in Imha Basin (기후변화에 따른 임하댐 유역의 GIS 기반 토양침식 추정)

  • Lee, Khil Ha;Lee, Geun Sang;Cho, Hong Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.423-429
    • /
    • 2008
  • The object of the present study is to estimate the potential effects of climate change and land use on soil erosion in the mid-east Korea. Simulated precipitation by CCCma climate model during 2030-2050 is used to model predicted soil erosion, and results are compared to observation. Simulation results allow relative comparison of the impact of climate change on soil erosion between current and predicted future condition. Expected land use changes driven by socio-economic change and plant growth driven by the increase of temperature and are taken into accounts in a comprehensive way. Mean precipitation increases by 17.7% (24.5%) for A2 (B2) during 2030-2050 compared to the observation period (1966-1998). In general predicted soil erosion for the B2 scenario is larger than that for the A2 scenario. Predicted soil erosion increases by 48%~90% under climate change except the scenario 1 and 2. Predicted soil erosion under the influence of temperature-induced fast plant growth, higher evapotranspiration rate, and fertilization effect (scenario 5 and 6) is approximately 25% less than that in the scenario 3 and 4. On the basis of the results it is said that precipitation and the corresponding soil erosion is likely to increase in the future and care needs to be taken in the study area.

Seasonal changes in community composition and abundance of aquatic insects and gastropods in rice fields (논에 서식하는 수서곤충 및 복족류 군집의 특성 및 계절적 변동)

  • Jinu Eo;Sang-Min Jun;Soon-Kun Choi;So-Jin Yeob;Nan-Hee An
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.335-344
    • /
    • 2023
  • Community composition and abundance of aquatic invertebrates are important for ecological functions. Community characteristics of insects and gastropods were compared in five regions to investigate the effect of geological factors in surveys conducted between June and August to analyze seasonal changes in invertebrate communities. Underwater traps were used to obtain a constant collection effect. Insect communities were dominated by Hydrochara affinis, Rhantus suturalis and Sigara nigroventralis, and nMDS analysis demonstrated the separation of their communities by region. H. affinis and Sternolophus rufipes were not found in Haenam and Cheolwon, respectively. The results showed the effects of regional temperature on the distribution of aquatic insects. Pomacea canaliculata, Hippeutis cantori and Austropeplea ollula were dominant in the gastropod community. The seasonal variation in the abundance of P. canaliculata was the most pronounced, and its abundance in August was 38.2 times higher than in June. The abundances of several species including Hippeutis cantori were negatively correlated with that of P. canaliculata. These results suggest that P. canaliculata is a pivotal factor that drives seasonal changes in gastropod community.

Comparison of Rice Growth under Subtropical and Temperate Environments (아열대와 온대 기후 하에서 벼 생육 비교)

  • Park H.K.;Xu Migging;Lee K.B.;Choil W.Y.;Choil M.G.;Kim S.S.;Kim C.K.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.2
    • /
    • pp.45-53
    • /
    • 2006
  • The objectives of this study are to determine the primary yield components responsible for yield differences in a subtropical environment of the Hunan province China and in a temperature environment of Honam province Korea. Field experiments were conducted in a subtropical environment in Hunan province China during 2002 and in a temperate environment in Honam province Korea during 2003. Seven rice cultivars were grown under optimum crop management in each experiment field. Yield, yield components and plant dry matter were determined at maturation. The highest yield (567 kg/10a) was produced at Honam province by Jinyou 207, a Chinese cultivar, The maximum yield at Hunan province was 453 kg/10a by Sanyou 63. On the average across cultivars, Honam produced 23% greater yields than Hunan. Sink size (spikelets per $m^2$) was responsible far these yield differences. Panicle number per $m^2$ was much greater at Honam.

Estimation of Domestic Greenhouse Gas Emission of Refrigeration and Air Conditioning Sector adapting 2006 IPCC GL Tier 2b Method (국내 냉동 및 냉방부문 온실가스 배출량 산정 - 2006 IPCC GL Tier 2b 적용 -)

  • Shin, Myung-Hwan;Lyu, Young-Sook;Seo, Kyoung-Ae;Lee, Sue-Been;Lim, Cheolsoo;Lee, Sukjo
    • Journal of Climate Change Research
    • /
    • v.3 no.2
    • /
    • pp.117-128
    • /
    • 2012
  • The Government of South Korea has continued its effort to fixate virtuous circle of economic growth and climate change response to cope with international demands and pressure to commitment for greenhouse gas reduction effectively. Nationally, Korean Government has established "Enforcement of the Framework Act on Low carbon, Green Growth"(2010. 4. 13) to implement national mid-term GHG mitigation goal(30% reduction by 2020 compare to BAU), which established the foundation for phased GHG mitigation by setting up the sectoral and industrial goal, adopting GHG and Energy Target Management System. Also, follow-up measures are taken such as planning and control of mid-term and short-term mitigation target by detailed analysis of potential mitigation of sector and industry, building up the infrastructure for periodic and systematic analysis of target management. Likewise, it is required to establish more accurate, reliable and detailed sectoral GHG inventory for successfully establishment and implement the frame act. In comparison to the $CO_2$ emission, Especially fluorinated greenhouse gases (HFCs, PFCs, $SF_6$) are lacking research to build the greenhouse gas inventories to identify emissions sources and collection of the applicable collection activities data. In this study, with the refrigeration and air conditioning sector being used to fluorine refrigerant(HFCs) as the center, greenhouse gas emission estimation methodology for evaluating the feasibility of using this methodology look over and mobile air conditioning, fixed air conditioning, household refrigeration equipment, commercial refrigeration equipment for the greenhouse gas emissions were calculated. First look at in terms of methodology, refrigeration and air conditioning sector GHG emissions in developing country-specific emission factors and activity data of the industrial sector the construction of the DB is not enough, it's 2006 IPCC Guidelines Tier 2a (emission factor approach) rather than the Tier 2b (mass balance approach) deems appropriate, and each detail by process, sectoral activity data more accurate, if DB is built Tier 2a (emission factor approach) can be applied will also be judged. Refrigeration and air conditioning sector in 2009 due to the use of refrigerant greenhouse gas emissions ($CO_2eq.$) assessment results, portable air conditioner 1,974,646 ton to year, fixed-mount air conditioner 1,011,754 ton to year, household refrigeration unit 4,396 ton to year, commercial refrigeration equipment 1,263 ton to year was estimated to total 2,992,037 tons.

Environmental Controls on Net Ecosystem CO2 Exchange during a Rice Growing Season at a Rice-Barley Double Cropping Paddy Field in Gimje, Korea (김제 벼-보리 이모작 논에서 벼 재배기간 동안의 순생태계 CO2 교환량에 대한 환경요인 분석)

  • Shim, Kyo Moon;Min, Sung Hyun;Kim, Yong Seok;Jeong, Myung Pyo;Hwang, Hae;Kim, Seok Cheol;So, Kyu Ho
    • Journal of Climate Change Research
    • /
    • v.5 no.1
    • /
    • pp.71-81
    • /
    • 2014
  • Using the Eddy Covariance technique, we analyzed seasonal variation in net ecosystem $CO_2$ exchange (NEE) and investigated the effects of environmental factors and aboveground biomass of rice on the $CO_2$ fluxes in a rice-barley double cropping paddy field of Gimje, Korea. Quality control and gap-filling were conducted before this investigation of the effects. The results have been showed that NEE, gross primary production (GPP), and ecosystem respiration (Re) during the rice growing period were -215.6, 763.9, and $548.3g\;C\;m^{-2}$, respectively. Relation between NEE and net radiation (Rn) could be described by a quadratic equation, and about 65 % of variation in NEE was explained by changes in Rn. On the other hand, an exponential function relating Re to soil temperature accounted for approximately 43 % of variation in Re under the flooded condition of paddy field. Aboveground biomass showed significant linear relationships with NEE ($r^2=0.93$), GPP ($r^2=0.96$), and Re ($r^2=0.95$), respectively.

The Impact of the Introduction of Hydrogen Energy into the Power Sector on the Economy and Energy (전력부문 수소에너지 도입의 경제 및 에너지부문 파급효과)

  • Lee, Sang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.502-507
    • /
    • 2016
  • The transition from a carbon economy based on fossil fuels to a hydrogen economy is necessary to ensure energy security and to combat climate change. In order to pursue the transition to a hydrogen economy while achieving sustainable economic growth, a preliminary study into the establishment of the necessary infrastructure for the future hydrogen economy needs to be carried out. This study addresses the economic and environmental interactions in a dynamic computable general equilibrium (CGE) model focusing on the economic effects of the introduction of renewable energy into the Korean energy system. Firstly, the introduction of hydrogen results in an increase in the investment in hydrogen production and the reduction of the production cost, ultimately leading to GDP growth. Secondly, the mandatory introduction of renewable energy and associated government subsidies bring about a reduction in total demand. Additionally, the mandatory introduction of hydrogen energy into the power sector helps to reduce CO2 emissions through the transition from a carbon economy-based on fossil energy to a hydrogen economy. This means that hydrogen energy needs to come from non-fossil fuel sources in order for greenhouse gases to be effectively reduced. Therefore, it seems necessary for policy support to be strengthened substantially and for additional studies to be conducted into the production of hydrogen energy from renewable sources.

Analysis of CO2 Emission Pattern by Use in Residential Sector (가정 부문 이산화탄소 배출량 추이 분석)

  • Yoon, So Won;Lim, Eun Hyouk;Lee, Gyoung Mi;Hong, You Deok
    • Journal of Climate Change Research
    • /
    • v.1 no.3
    • /
    • pp.189-203
    • /
    • 2010
  • The objective of this study is the estimate of $CO_2$ emissions by the energy consumption of functional technology introduced by classifying energy use in households according to functions as well as energy resources. This study also intends to provide the practical basis data in order to establish specific alternatives for GHG mitigation in residential sector with examining the cause analysis affecting $CO_2$ emission increases from 1995 to 2007. The results of this study show a 6.6% increase in the total $CO_2$ from 60,636 thousand tons in 1995 to 64,611 thousand tons in 2007 by using energy in residential sector. Heating is the greatest $CO_2$ emission sector by use, followed electric appliances, cooking, lighting and cooling. Heating sector shows 56.6% reductions from 71.5% in 1995 and as do cooling and electric home appliances, with a 2.4% increase from 0.6% and a 21.8% increase from 14.2% respectively. To analyze factors resulted in $CO_2$ emissions in residential sector, the relevant indicator change rate from 2005 to 2007 was examined. The results find that population, the number of household, housing areas, family patterns, and family income resulted in the $CO_2$ emissions increase in residential sector from 1995 to 2007. On the other hand, carbon intensity and energy intensity contribute to $CO_2$ reduction in residential sector with -2% and -38.7% respectively because of the energy conversion and the improvement of energy efficiency in electronic appliances. This study can be used as a reference when taken account of the reality and considered the introduction of highly effective measures to increase the possibility of mitigation potential in residential sector hereafter.

Dam Basin-scale Regionalization of Large-scale Model Output using the Artificial Neural Network (인공신경망모형을 이용한 대규모 대기모형모의결과의 댐유역스케일에서의 지역화기법)

  • Kang, Boo-Sik;Lee, Bong-Ki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.179-183
    • /
    • 2009
  • 본 연구에서는 GCM 기후변화 전망 시나리오를 이용하여 유역단위의 기후변화를 추정하였다. 원시 GCM 시나리오를 지역화 시키기 위해서 인공신경망 모형을 사용하였다. GCM에서 모의되는 강수플럭스, 해면기압, 지표면 근처에서의 일 평균온도, 지표면으로부터 발생하는 잠열플럭스 등과 같은 22개의 변수는 인공신경망의 잠재적 예측인자로 사용되었으며, AWS에서 관측된 강수량과 온도는 예측변수로 사용되었다. 원시 GCM 데이터는 CCCma(Canadian Centre for Climate Modeling and Analysis)에서 제공되는 CGCM3.1/T63 20C3M 시나리오를 사용하였으며, 인공신경망 학습과정에서 사용된 기준시나리오(reference scenario)자료의 기간은 1997년부터 2000년까지의 데이터를 사용하였다. 인공신경망을 학습을 통하여 결정된 각 층사이의 가중치를 이용하여 이산화탄소 배출농도를 가정하여 생성된 CGCM3.1/T63 SRES B1 기후변화시나리오(project scenario)를 인공신경망의 입력값으로 하여 미래의 기온과 강수변화를 전망하였다. 신경망의 학습효과를 높이기 위하여 기온과 강수에 대한 평균 및 누적기간을 각각 일단위와 월단위로 설정하였다. 본 연구에서 사용된 인공신경망은 3층 퍼셉트론(다층 퍼셉트론)을 사용하였으며, 학습방법으로는 역전파알고리즘(back-propagation algorithm)을 이용하였다. 민감도분석을 통하여 선택된 예측인자는 소양강댐유역(1011, 1012소유역)에서의 인공신경망 예측인자로 활용되었으며, 2001년부터 2100년까지의 일 평균온도와 일 강수량의 변화경향을 추정하였다. 1011유역, 1012유역에서는 여름철의 온도변화경향이 겨울철에 비하여 높게 나타났다. 일 평균온도의 통계분석 결과 평균예측오차가 가장 적게 나타나는 지역은 1001유역으로 -0.08로 평균예측오차가 가장 적게 나타났으며, 인공신경망기법을 이용하여 스케일 상세화된 일 평균온도와 관측된 일 평균온도가 얼마나 잘 일치하는지를 확인할 수 있는 1012유역에서 CORR이 0.74로 가장 높게 나타났다.

  • PDF