• Title/Summary/Keyword: 기후적응성

Search Result 340, Processing Time 0.034 seconds

Climate Change-induced High Temperature Stress on Global Crop Production (기후변화로 인한 작물의 고온 스트레스 전망)

  • Lee, Kyoungmi;Kang, Hyun-Suk;Cho, ChunHo
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.5
    • /
    • pp.633-649
    • /
    • 2016
  • Exposure to high temperatures during the reproductive period of crops decreases their productivity. The Intergovernmental Panel on Climate Change's (IPCC) fifth Assessment Report predicts that the frequency of high temperatures will continue to increase in the future, resulting in significant impacts on the world's food supply. This study evaluate climate change-induced heat stress on four major agricultural crops (rice, maize, soybean, and wheat) at a global level, using the coupled atmosphere-ocean model of Hadley Centre Global Environmental Model version 2 (HadGEM2-AO) and FAO/IIASA Global Agro-Ecological Zone (GAEZ) model data. The maximum temperature rise ($1.8-3.5^{\circ}C$) during the thermal-sensitive period (TSP) from the baseline (1961-1990) to the future (2070-2090) is expected to be larger under a Representative Concentration Pathway (RCP) 8.5 climate scenario than under a RCP2.6 climate scenario, with substantial heat stress-related damage to productivity. In particular, heat stress is expected to cause severe damage to crop production regions located between 30 and $50^{\circ}N$ in the Northern Hemisphere. According to the RCP8.5 scenario, approximately 20% of the total cultivation area for all crops will experience unprecedented, extreme heat stress in the future. Adverse effects on the productivity of rice and soybean are expected to be particularly severe in North America. In Korea, grain demands are heavily dependent on imports, with the share of imports from the U.S. at a particularly high level today. Hence, it is necessary to conduct continuous prediction on food security level following the climate change, as well as to develop adaptation strategy and proper agricultural policy.

  • PDF

Assessing and Mapping Regional Vulnerability to Agricultural Drought (농업가뭄 취약성 평가 및 가뭄취약지도 작성)

  • Mun, Young-Sik;Nam, Won-Ho;Jeon, Min-Gi;Lee, Seung-Yong;Lee, Kwangya
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.155-155
    • /
    • 2020
  • 최근 전 세계적으로 기후변화 및 이상기후로 인해 홍수, 가뭄과 같은 수자원과 관련된 재해들의 빈도가 증가하고 있는 추세이다. 가뭄은 발생 시작 및 종료 시기가 명확하지 않고, 그 피해가 광범위한 특징으로 인해 농업분야에 직접적인 피해를 주고 있으며, 농산물 생산성 및 안정적인 농업용수 확보에 큰 영향을 미치고 있다. 과거 가뭄을 해석하기 위해서는 일반적으로 강수량, 가뭄지수 등 단일지표를 활용하여 가뭄을 평가하였으나, 최근 선제적인 가뭄대응을 위해 다양한 인자들을 종합하여 판단하는 취약성 평가 (Vulnerability Assessment) 개념을 도입하였다. 농업가뭄 취약성은 IPCC (Intergovernmental Panel on Climate Change)에서 기상 및 수문학적 가뭄에 의한 작물 생산 피해 및 가축의 피해를 동반할 수 있는 가능성으로 정의한다. 본 연구에서는 농업용 저수지 중심의 농업용수 기반 취약성 평가 항목을 선정하여 농업가뭄 취약지도를 작성하였다. 민감도, 노출도 및 적응능력 개념에 적합한 대응변수를 활용하여 저수지의 저수율, 용수 부족 및 가뭄 대응능력 뿐만 아니라 사회·환경적, 기상학적 영향을 고려한 평가 항목 선정하였다. 항목별 단위 및 특성을 통합하기 위해 스케일 재조정 (Re-Scaling), Z-Score 등 다양한 방법을 활용하여 표준화를 실시하였으며, AHP (Analytic Hierarchy Process), 엔트로피 분석 등을 통해 항목별 가중치를 산정하였다. 또한 농업가뭄에 긍정적인 영향과 부정적인 영향을 미치는 항목을 구분하여 대응변수를 적용하였다. 이를 바탕으로 농업가뭄 취약성을 평가하여 항목별 등급을 구분하였으며, 전국 167개 시군을 대상으로 농업가뭄 취약지도를 작성하였다. 본 연구의 결과는 시군별 맞춤형 농업가뭄 대응정책의 기초자료 활용 가능하며, 농업가뭄 취약지역/상습가뭄지역에 대한 정보 제공이 가능할 것으로 판단된다.

  • PDF

Albizia miokalkora Hu and Chaney from the Duho Formation of Yeonil Group (Miocene) in the Pohang Basin, Korea (포항 분지 연일층군(마이오세)의 두호층에서 산출된 Albizia miokalkora Hu and Chaney)

  • Kim, Jong-Heon
    • Journal of the Korean earth science society
    • /
    • v.31 no.7
    • /
    • pp.691-697
    • /
    • 2010
  • Three legume fossils collected from the Miocene Duho Formation of Yeonil Group in the northern Pohang Beach, Gyeongsangbug-do, Korea were described as Albizia miokalkora Hu and Chaney. This species has only appearing in the Miocene floras of Korea, China and Japan until present. It has wide distribution from warm temperate to subtropical-tropical regions but, the diversity of the species of Albizia is not so high. It is considered that the fossil Albizia miokalkora Hu and Chaney might have adapted to the warm climate such as warm temperate climate and subtropical to tropical climate.

Prediction of Acer pictum subsp. mono Distribution using Bioclimatic Predictor Based on SSP Scenario Detailed Data (SSP 시나리오 상세화 자료 기반 생태기후지수를 활용한 고로쇠나무 분포 예측)

  • Kim, Whee-Moon;Kim, Chaeyoung;Cho, Jaepil;Hur, Jina;Song, Wonkyong
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.163-173
    • /
    • 2022
  • Climate change is a key factor that greatly influences changes in the biological seasons and geographical distribution of species. In the ecological field, the BioClimatic predictor (BioClim), which is most related to the physiological characteristics of organisms, is used for vulnerability assessment. However, BioClim values are not provided other than the future period climate average values for each GCM for the Shared Socio-economic Pathways (SSPs) scenario. In this study, BioClim data suitable for domestic conditions was produced using 1 km resolution SSPs scenario detailed data produced by Rural Development Administration, and based on the data, a species distribution model was applied to mainly grow in southern, Gyeongsangbuk-do, Gangwon-do and humid regions. Appropriate habitat distributions were predicted every 30 years for the base years (1981 - 2010) and future years (2011 - 2100) of the Acer pictum subsp. mono. Acer pictum subsp. mono appearance data were collected from a total of 819 points through the national natural environment survey data. In order to improve the performance of the MaxEnt model, the parameters of the model (LQH-1.5) were optimized, and 7 detailed biolicm indices and 5 topographical indices were applied to the MaxEnt model. Drainage, Annual Precipitation (Bio12), and Slope significantly contributed to the distribution of Acer pictum subsp. mono in Korea. As a result of reflecting the growth characteristics that favor moist and fertile soil, the influence of climatic factors was not significant. Accordingly, in the base year, the suitable habitat for a high level of Acer pictum subsp. mono is 3.41% of the area of Korea, and in the near future (2011 - 2040) and far future (2071 - 2100), SSP1-2.6 accounts for 0.01% and 0.02%, gradually decreasing. However, in SSP5-8.5, it was 0.01% and 0.72%, respectively, showing a tendency to decrease in the near future compared to the base year, but to gradually increase toward the far future. This study confirms the future distribution of vegetation that is more easily adapted to climate change, and has significance as a basic study that can be used for future forest restoration of climate change-adapted species.

Estimating Stand Volume Pinus densiflora Forest Based on Climate Change Scenario in Korea (미래 기후변화 시나리오에 따른 우리나라 소나무 임분의 재적 추정)

  • Kim, Moonil;Lee, Woo-Kyun;Guishan, Cui;Nam, Kijun;Yu, Hangnan;Choi, Sol-E;Kim, Chang-Gil;Gwon, Tae-Seong
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.105-112
    • /
    • 2014
  • The main purpose of this study is to measure spatio-temporal variation of forest tree volume based on the RCP(Representative Concentration Pathway) 8.5 scenario, targeting on Pinus densiflora forests which is the main tree species in South Korea. To estimate nationwide scale, $5^{th}$ forest type map and National Forest Inventory data were used. Also, to reflect the impact of change in place and climate on growth of forest trees, growth model reflecting the climate and topography features were applied. The result of the model validation, which compared the result of the model with the forest statistics of different cities and provinces, showed a high suitability. Considering the continuous climate change, volume of Pinus densiflora forest is predicted to increase from $131m^3/ha$ at present to $212.42m^3/ha$ in the year of 2050. If the climate maintains as the present, volume is predicted to increase to $221.92m^3/ha$. With the climate change, it is predicted that most of the region, except for some of the alpine region, will have a decrease in growth rate of Pinus densiflora forest. The growth rate of Pinus densiflora forest will have a greater decline, especially in the coastal area and the southern area. With the result of this study, it will be possible to quantify the effect of climate change on the growth of Pinus densiflora forest according to spatio-temporal is possible. The result of the study can be useful in establishing the forest management practices, considering the adaptation of climate change.

Evaluation of GHG Emission in Local Governments using GEBT Model (GEBT를 활용한 지자체 온실가스 배출량 산정 연구 - 시흥시를 중심으로 -)

  • Choi, Bong Seok;Yun, Seong Gwon;Lee, Dong Eun;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.291-303
    • /
    • 2013
  • After establishing national greenhouse gas emission reduction goals, the South Korean government has been pursuing sector- and industry-specific greenhouse gas emission reduction measures; in support of which, metropolitan city / state governing entities, such as Gyeonggi Province, etc., have been in lock steps by establishing and executing climate change measures that are appropriate for the regional characteristics. However, in the case of local governments, difficulties abound due to the fact that the per-unit greenhouse gas emission amounts and the future emission estimates for establishing reduction targets are not clear. In order to establish correct climate change measure policies, the policy directions and the assessment of verified greenhouse gas emission amounts would need to serve as the basis, and along with the national level climate change effect and vulnerability assessment, there's a need to develop methodologies that take into consideration the local characteristics and conditions. To this end, this study calculated the greenhouse gas emission amounts of the City of Siheung, a basic local government in Gyeonggi Province, by using the GEBT (Greenhouse gas Emission Business-as-usual Tool) developed by the National Institute of Environmental Research to facilitate easy calculations of BAU (business-as-usual) emission quantities by local governing entities.

Assessment of Future Climate and Land Use Change on Hydrology and Stream Water Quality of Anseongcheon Watershed Using SWAT Model (II) (SWAT 모형을 이용한 미래 기후변화 및 토지이용 변화에 따른 안성천 유역 수문 - 수질 변화 분석 (II))

  • Lee, Yong Jun;An, So Ra;Kang, Boosik;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.665-673
    • /
    • 2008
  • This study is to assess the future potential climate and land use change impact on streamflow and stream water quality of the study watershed using the established model parameters (I). The CCCma (Canadian Centre for Climate Modelling and Analysis) CGCM2 (Canadian Global Coupled Model) based on IPCC SRES (Special Report Emission Scenarios) A2 and B2 scenarios were adopted for future climate condition, and the data were downscaled by Stochastic Spatio-Temporal Random Cascade Model technique. The future land use condition was predicted by using modified CA-Markov (Cellular Automata-Markov chain) technique with the past time series of Landsat satellite images. The model was applied for the future extreme precipitation cases of around 2030, 2060 and 2090. The predicted results showed that the runoff ratio increased 8% based on the 2005 precipitation (1160.1 mm) and runoff ratio (65%). Accordingly the Sediment, T-N and T-P also increased 120%, 16% and 10% respectively for the case of 50% precipitation increase. This research has the meaning in providing the methodological procedures for the evaluation of future potential climate and land use changes on watershed hydrology and stream water quality. This model result are expected to plan in advance for healthy and sustainable watershed management and countermeasures of climate change.

An Analysis on the Spatial Patterns of Heat Wave Vulnerable Areas and Adaptive Capacity Vulnerable Areas in Seoul (서울시 폭염 취약지역의 공간적 패턴 및 적응능력 취약지역 분석)

  • Choi, Ye Seul;Kim, Jae Won;Lim, Up
    • Journal of Korea Planning Association
    • /
    • v.53 no.7
    • /
    • pp.87-107
    • /
    • 2018
  • With more than 10 million inhabitants, in particular, Seoul, the capital of Korea, has already experienced a number of severe heat wave. To alleviate the potential impacts of heat wave and the vulnerability to heat wave, policy-makers have generally considered the option of heat wave strategies containing adaptation elements. From the perspective of sustainable planning for adaptation to heat wave, the objective of this study is to identify the elements of vulnerability and assess heat wave-vulnerability at the dong level. This study also performs an exploratory investigation of the spatial pattern of vulnerable areas in Seoul to heat wave by applying exploratory spatial data analysis. Then this study attempts to select areas with the relatively highest and lowest level of adaptive capacity to heat wave based on an framework of climate change vulnerability assessment. In our analysis, the adaptive capacity is the relatively highest for Seongsan-2-dong in Mapo and the relatively lowest for Changsin-3-dong in Jongno. This study sheds additional light on the spatial patterns of heat wave-vulnerability and the relationship between adaptive capacity and heat wave.

Preparation of Soil Input Files to a Crop Model Using the Korean Soil Information System (흙토람 데이터베이스를 활용한 작물 모델의 토양입력자료 생성)

  • Yoo, Byoung Hyun;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.174-179
    • /
    • 2017
  • Soil parameters are required inputs to crop models, which estimate crop yield under a given environment condition. The Korean Soil Information System (KSIS), which provides detailed soil profile record of 390 soil series in the HTML (HyperText Markup Language) format, would be useful to prepare soil input files. Korean Soil Information System Processing Tool (KSISPT) was developed to aid generation of soil input data based on the KSIS database. Java was used to implement the tool that consists of a set of modules for parsing the HTML document of the KSIS, storing data required for preparing soil input file, calculating additional soil parameter, and writing soil input file to a local disk. Using the automated soil data preparation tool, about 940 soil input data were created for the DSSAT model and the ORYZA 2000 model, respectively. In combination with soil series distribution map at 30m resolution, spatial analysis of crop yield could be projected under climate change, which would help the development of adaptation strategies.

A study on the establishment of Green Stormwater Infrastructure(GSI) promotion system to respond to the climate crisis (기후위기 대응을 위한 그린빗물인프라(GSI) 조성 추진체계 구축 연구)

  • Hyo Jung Lee;Hyun Suk Shin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.437-437
    • /
    • 2023
  • 최근 기후변화로 발생되는 폭우, 강풍 등의 기상현상으로 인해 하천범람, 내수침수, 해수범람 등 특히 해안도시지역에서의 물 문제는 날로 심화되고 있다. 이에 정부에서는 저영향개발(Low Impact Development, LID) 사업 및 친환경그린인프라(Green Infrastructure, GI) 기술요소의 적용확대를 추진하고 있다. 이에 환경부에서는 환경기술개발사업의 일환으로 '그린인프라 제도/정책 및 재원관리의 선진화(2021)' 연구용역을 통해 관련 추진체계 구축, 제도 개선방안 등을 모색하였다. 해당 연구에서는 기존의 LID 및 GI 관련 정책·제도 개선, 강우유출수 관리목표 설정방안, 투수/불투수도 제작 지침 마련, 시민인식조사 등을 통해 그린인프라 확대를 위한 과학적 근거 및 통합관리제도를 마련하였다. 이와 더불어 2013년부터 도시지역의 우수유출 저감, 물순환 구조 개선, 비점오염원 관리를 위해 '그린빗물인프라(Green Stormwater Infrastructure, GSI) 조성 사업'을 추진하여 국비지원을 지속하고 있다. 'GSI 조성사업'은 2014년 공공청사 중심에서 학교, 도서관, 체육시설, 공원 등 적용 범위를 확대 하고 있는 추세이나, 수도권지역과 물순환선도도시 조성사업이 진행중인 5개 지역(김해시, 광주시, 안동시, 울산시, 대전시)을 제외한 각 지자체에서는 실효성 있는 추진체계 및 가이드라인 부존 등의 문제로 적용에 어려움을 겪고 있다. 이에 경상남도는 지역적 특성을 반영한 GSI 조성 추진체계 마련을 목표로 본 연구용역을 추진하였으며, GSI 관련 국내외 현황조사, GSI 조성을 위한 공공청사의 우선순위 선정, 지형적(토지피복, 토양형 등), 기상학적 현황을 토대로 한 우선순위 선정, 이를 통합한 경남형 GSI 조성 추진체계를 제시하고자 한다.

  • PDF