• Title/Summary/Keyword: 기학학습 수준

Search Result 3, Processing Time 0.017 seconds

A Study on Teaching Figures Based on van Hiele's Theory - Focused on the 4th Graders - (van Hiele의 학습단계에 따른 초등학교 4학년의 도형지도 방안연구)

  • Seo, Eun-Young;Chang, Hye-Won
    • Education of Primary School Mathematics
    • /
    • v.13 no.2
    • /
    • pp.85-97
    • /
    • 2010
  • The purpose of this study is to develop a teaching program in consideration of the geometrical thinking levels of students to make a contribution to teaching figures effectively. To do this, we checked the geometrical thinking levels of fourth-graders, developed a teaching program based on van Hiele's theory, and investigated its effect on their geometrical thinking levels. The teaching program based on van Hiele's theory put emphasis on group member interaction and specific activities through offering various geometrical experiences. It contributed to actualizing activity-centered, student-oriented, inquiry-oriented and inductive instruction instead of sticking to expository, teacher-led and deductive instruction. And it consequently served to improving their geometrical thinking levels, even though some students didn't show any improvement and one student was rather degraded in that regard - but in the former case they made partial progress though there was little marked improvement, and in the latter case she needs to be considered in relation to her affective aspects above all. The findings of the study suggest that individual variances in thinking level should be recognized by teachers. Students who are at a lower level should be given easier tasks, and more challenging tasks should be assigned to those who are at an intermediate level in order for them to have a positive self-concept about mathematics learning and ultimately to foster their thinking levels.

A Development and Applications of Problem Solving Tool for Learning Geometry (기하 학습을 위한 문제해결 도구 개발 및 적용)

  • Bae, Jin-Seong;Kim, Kap-Su
    • Journal of The Korean Association of Information Education
    • /
    • v.14 no.3
    • /
    • pp.449-459
    • /
    • 2010
  • Using a geometric computer program achieve learning effects as handling various function and has advantage to overcome the environment of classroom through providing an inquiring surroundings in the figure learning at an elementary school. There are many software for drawing the geometric. But currently most is focus on how to use the softwares without contents. So, It is necessary to develope a geometric software adapted cognitive development of primary schoolchildren. This study is aim to analyze elementary mathematic curriculum based on Van Heiles theory, to develope the software(Geometry for Kids : GeoKids) considering cognitive level of the primary schoolchildren. This software is developed to substitute a ruler and a compass considering cognitive level of the primary schoolchildren. Using mouse, GeoKids software help a child to draw easily lines and circles and this software notice another lines and circle automatically for a more accurate drawing figures. Children can use practically this software in connection with subjects of elementary mathematic curriculum.

  • PDF

Analysis on the Characteristics of National Assessment of Educational Achievement (NAEA) Items for Science Subject: With a Focus on Optics (국가수준 학업성취도 평가의 과학 문항 특성 분석 : 광학 내용을 중심으로)

  • Lee, Bongwoo;Lee, Inho
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.3
    • /
    • pp.465-475
    • /
    • 2015
  • The purpose of this study is to analyze the results of physics (optics) in nationwide standardized assessment and to investigate middle-school students' characteristics of achievement by using an option response rate distribution curve. For this purpose, we analyzed the 10 optics problems from the National Assessment of Educational Achievement (NAEA) items for middle school science subject conducted in 2010-2013. The results of this study are as follows; First, students showed a little higher achievement in optics than classical mechanics and electromagnetism. Second, students achieved significantly worse in 'formation of image' in 'light' part and 'variation of phase in propagation of wave' in 'wave' part. Third, students showed a context-dependent problem solving strategy and result. Additionally, we suggested some implications about the readjustment of some optics concepts level of national science curriculum, the need for teaching and learning strategies for basic level students, and the need for teaching and learning strategies focused on the realistic context.