본 연구에서는 LSTM 모형을 이용하여 갈수예보를 위한 월 단위 전망모형개발의 대상지점으로 이수 및 치수의 측면에서 아주 중요한 한강대교 지점을 선정하였으며 유량예보를 위하여 한강수계 19개 기상관측소의 월평균강수량, 월평균기온 및 3개 댐(소양,횡성,충주)의 월방류량을 사용하여 한강대교의 월 유량을 예측하였다. 1996년부터 2016년까지의 자료는 모형의 학습, 2017년 자료는 모형의 검증에 활용하였으며 가장 최근 건설된 횡성댐 방류량의 경우 1996년~2000년의 자료가 없으므로 2001년~2005년의 자료를 반복하여 학습에 활용하였다. 모형의 예측결과는 신경망 학습 시 한강대교 월유량자료를 포함한 결과와 미포함 결과를 도출하였으며, 모의결과의 재현성 분석을 위하여 월별 예측값과 실측값의 비율을 산정하였으며 1월부터 12월까지 12개 값을 평균하여 평균예측률을 산정하고 이를 홍수기(6월~10월) 및 비홍수기(1월~5월, 11월~12월)를 구분하였다. 딥러닝 학습 시 월유량을 포함한 경우의 예측결과가 학습 시 월유량을 포함하지 않았을 경우보다 상대적으로 좋은 정확도를 보이는 것으로 분석되었다. 다만, 신경망을 실제 갈수예보에 활용하기 위해서는 예측 기상정보인 월강우량, 월평균기온, 댐방류량만을 활용하여야 하는데 학습 시월유량 미포함 결과는 예측률이 매우 낮았으며, 신경망의 학습횟수가 늘어날 경우 학습자료 과적합(over-fitting)되어 정확도가 보다 저하되는 것으로 나타났다. 그래서 기존의 현재시간 t까지의 입력자료로 학습 후 익월(t+1)의 월유량을 예측하는 (t $\rightarrow$ t+1) 방법에서 현재시점 (t-n ~ t)까지의 입력자료를 이용하여 당월(t)의 월유량을 산정하는 (t$\rightarrow$t) 방법으로 재학습 후 모형검증을 수행한 결과 전술한 익월(t+1) 유량을 예측한 결과보다 재현성이 훨씬 향상된 것으로 분석되며평균예측률이 0.99로 홍수기 및 비홍수기에서도 뛰어난 정확성을 보이고 있다.
멀티미디어 교수/학습 자료들을 제작함에 있어서 학습자가 컴퓨터와의 상호작용을 통해 직접 학습과정에 참여할 수 있도록 하기 위하여 시나리오의 내용에 따라 각각의 멀티미디어 요소를 정의하고 화면에 배치하는 것은 물론 시간흐름에 따라 화면상에서 이루어지는 사용자와의 상호작용을 스토리보드에 손쉽게 표현할 수 있어야 한다. 이를 위하여 본 논문에서는 스토리보드 작성기를 개발함에 있어서, 화면상에서 이루어지는 학습자와 컴퓨터간의 상호작용을 스토리보드에 표현하기 위한 모델을 제안하고, 그에 따른 스토리보드 작성기의 주요 기능과 작업 화면들을 설명하고 있다.
최근에 인공지능 분야에서는, 국내외적으로 강화학습(reinforcement learning)에 관한 관심이 크게 증폭되고 있다. 강화학습의 최근 경향을 살펴보면, 크게 가치함수를 직접 활용하는 방법(value function-based methods), 제어 전략에 대한 탐색을 활용하는 방법(policy search methods), 그리고 액터-크리틱 방법(actor-critic methods)의 세가지 방향으로 발전하고 있음을 알 수 있다. 본 논문에서는 이중 세 번째 부류인 액터-크리틱 방법 중 NAC(natural actor-critic) 기법의 한 종류인 RLS-NAC(recursive least-squares based natural actor-critic) 알고리즘을 다양한 트레이스 감쇠계수를 사용하여 연속제어입력(real-valued control inputs)으로 제어되는 Kimura의 기는 로봇에 대해 적용해보고, 그 성능을 기존의 SGA(stochastic gradient ascent) 알고리즘을 이용하여 학습한 경우와 비교해보도록 한다.
다층 퍼셉트론은 다양한 응용 분야에 성공적으로 적용되고 있는 대표적인 신경회로망 모델이다. 그러나 다층 퍼셉트론의 학습에 사용되는 오류역전파 알고리즘으로 알려진 기울기 강하 학습법은 느린 수렴속도로 인해 실시간 처리가 요구되거나 시간에 따라 환경이 변하는 문제에의 적용이 불가능하다. 이러한 느린 수렴속도는 기울기 강하법을 사용한 학습과정에서의 오차함수의 기울기 변화가 극히 적어 오차의 감소가 거의 일어나지 않는 부분인 플라토에 기인하는 것으로 알려져있다. 본 논문에서는 정보기하이론의 관점에서 기존의 학습법에 사용되는 기울기의 이론적 문제를 지적하고, 그로부터 플라토 문제의 원인을 밝힌다. 또한 이를 바탕으로 정보기하이론에 의해 새롭게 정의되는 자연 기울기를 이용한 학습법을 제시하고, 이를 이용한 플라토 문제가 문제해결의 가능성을 분석적으로 고찰하고 실험을 통해 확인한다.
메모리 기반 추론 기법은 분류시 입력 패턴과 저장된 패턴들 사이의 거리를 이용하는 교사 학습 기법으로써, 거리 기반 학습 알고리즘이라고도 한다. 메모리 기반 추론은 k_NN 분류기에 기반한 것으로, 학습은 추가 처리 없이 단순히 학습 패턴들을 메모리에 저장함으로써 수행된다. 본 논문에서는 기존의 k-NN 분류기보다 효율적인 분류가 가능하고, 점진적 학습 기능을 갖는 새로운 알고리즘을 제안한다. 또한 제안된 기법은 노이즈에 민감하지 않으며, 효율적인 메모리 사용을 보장한다.
딥러닝 모델의 성능은 데이터의 품질과 양에 의해 향상된다. 그러나 데이터 구축은 많은 비용과 시간을 요구한다. 특히 전문 도메인의 데이터를 구축할 경우 도메인 지식을 갖춘 작업자를 활용할 비용과 시간이 더욱 제약적이다. 능동 학습 기법은 최소한의 데이터 구축으로 모델의 성능을 효율적으로 상승시키기 위한 방법이다. 다양한 데이터셋이 능동 학습 기법으로 구축된 바 있으나, 아직 전문 도메인의 한국어 데이터를 구축하는 연구는 활발히 수행되지 못한 것이 현실이다. 본 논문에서는 능동학습기법을 통해 금융 도메인의 개체명 인식 코퍼스를 구축하였고, 이를 통해 다음의 기여가 있다: (1) 금융 도메인 개체명 인식 코퍼스 구축에 능동 학습 기법이 효과적임을 확인하였고, (2) 이를 통해 금융 도메인 개체명 인식기를 개발하였다. 본 논문이 제안하는 방법을 통해 8,043문장 데이터를 구축하였고, 개체명 인식기의 성능은 80.84%로 달성되었다. 또한 본 논문이 제안하는 방법을 통해 약 12~25%의 예산 절감 효과가 있음을 실험으로 보였다.
자율주행 자동차 개발 연구가 활발히 진행됨에 따라 객체 검출기의 성능이 중요하게 되었다. 딥러닝 기술의 발전하면서 객체 검출기의 성능도 큰 발전을 이루었다. 그에 따라 도로 위 차량 검출기의 성능도 발전하고 있으나 평상시 낮 도로상황에서 잘 동작하던 모델은 안개가 끼거나 밤 상황이 되면 제대로 동작하지 못하는 문제를 가지고 있다. 이유는 딥러닝 모델이 학습할 때 사용한 데이터셋의 정보에 따라 특정 도메인에 편향된 특성을 학습하기 때문이다. 따라서, 본 논문에서는 객체 검출 신경망에 도메인 판별기를 적용하여 이와 같은 도메인 이동 문제를 극복하는 모델을 제안한다. 모델의 성능을 Cityscapes 데이터셋과 Foggy Cityscapes 데이터셋을 사용하여 평가한 결과, 기존의 특정 도메인에서 학습한 모델보다 제안하는 모델의 검출 성능이 개선된다는 것을 확인하였다.
본 연구는 정당화의 도입과 관련하여 중학교 기하 영역에서 정당화를 어떻게 지도할 것인가에 대한 논의로부터 출발하여 개정 수학 교과서를 분석을 통해 정당화 지도 방향을 탐색하고 정당화 수업에 대한 시사점을 제공하기 위하여 수행되었다. 연구자는 두 명의 협력자와 함께 선행 연구의 분석 기준을 활용하여 중학교 수학 (2) 교과서의 기하단원을 분석하였으며, 그 결과, 교과서에 제시된 정당화 단계 및 유형을 여러 수준의 학습자들에게 적용 가능하도록 다양한 형태로 제시하려는 노력이 필요하며, 학습자들이 기하 학습을 지루하고 어렵게 느끼지 않도록 교과서의 내용을 적절히 재구성하여 학습자의 수준에 맞는 정당화 활동을 유도할 필요가 있음을 확인하였다.
최근 학습 패러다임은 문서 중심에서 지식 및 정보 기반으로 크게 변화하고 있다. 또한 유비쿼터스 사회로의 전환을 맞이하여 다양한 USN 기술 기반의 학습 연구가 활발히 진행 중이다. 그 중 RFID 기술 기반의 학습 연구에서는 대부분 유비쿼터스 학습 환경 구축에 관한 연구가 주를 이루고 있다. 따라서 실질적인 학습에 적용하는 연구의 결과는 미미하다. 본 논문에서는 RFID기술 기반의 다국어 학습기를 구현하였다. 태그를 인식하여 특정 사물을 사용자로 하여금 모국어뿐만 아니라 다국어로도 변역하여 여러 가지 언어들을 학습할 수 있게 지원하는 장치이다. 실험에서는 13.56Mhz의 RFID 및 PXA255A ARM보드 사용하여 학습기를 제작하여 효율성 테스트를 하였다.
라벨 데이터 수집의 어려움에 따라 라벨이 없는 데이터로 학습하는 준지도학습, 비지도학습에 대한 연구가 활발하게 진행되고 있다. 본 논문에서는 그의 일환으로 Novel Intent Category Discovery(NICD) 문제를 제안하고 NICD 연구의 베이스라인이 될 모델을 소개한다. NICD 문제는 라벨이 있는 데이터와 라벨이 없는 데이터의 클래스 셋이 겹치지 않는다는 점에서 기존 준지도학습의 문제들과 차이가 있다. 제안 모델은 RoBERTa를 기반으로 두 개의 분류기를 추가하여 구성되며 라벨이 있는 데이터셋과 라벨이 없는 데이터셋에서 각각 다른 분류기를 사용하여 라벨을 예측한다. 학습방법은 2단계로 먼저 라벨이 있는 데이터셋으로 요인표현을 학습한다. 두 번째 단계에서는 교차 엔트로피, 이항교차 엔트로피, 평균제곱오차, 지도 대조 손실함수를 NICD 문제에 맞게 변형하여 학습에 사용한다. 논문에서 제안된 모델은 라벨이 없는 데이터셋에 대해 이미지 최고성능 모델보다 24.74 더 높은 정확도를 기록했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.