• Title/Summary/Keyword: 기하 학습

검색결과 2,941건 처리시간 0.032초

인공신경망을 이용한 갈수기 수문량 산정 (Estimation of the streamflow during dry season using artificial neural network)

  • 정성호;조효섭;김정엽;이기하
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.377-377
    • /
    • 2019
  • 본 연구에서는 LSTM 모형을 이용하여 갈수예보를 위한 월 단위 전망모형개발의 대상지점으로 이수 및 치수의 측면에서 아주 중요한 한강대교 지점을 선정하였으며 유량예보를 위하여 한강수계 19개 기상관측소의 월평균강수량, 월평균기온 및 3개 댐(소양,횡성,충주)의 월방류량을 사용하여 한강대교의 월 유량을 예측하였다. 1996년부터 2016년까지의 자료는 모형의 학습, 2017년 자료는 모형의 검증에 활용하였으며 가장 최근 건설된 횡성댐 방류량의 경우 1996년~2000년의 자료가 없으므로 2001년~2005년의 자료를 반복하여 학습에 활용하였다. 모형의 예측결과는 신경망 학습 시 한강대교 월유량자료를 포함한 결과와 미포함 결과를 도출하였으며, 모의결과의 재현성 분석을 위하여 월별 예측값과 실측값의 비율을 산정하였으며 1월부터 12월까지 12개 값을 평균하여 평균예측률을 산정하고 이를 홍수기(6월~10월) 및 비홍수기(1월~5월, 11월~12월)를 구분하였다. 딥러닝 학습 시 월유량을 포함한 경우의 예측결과가 학습 시 월유량을 포함하지 않았을 경우보다 상대적으로 좋은 정확도를 보이는 것으로 분석되었다. 다만, 신경망을 실제 갈수예보에 활용하기 위해서는 예측 기상정보인 월강우량, 월평균기온, 댐방류량만을 활용하여야 하는데 학습 시월유량 미포함 결과는 예측률이 매우 낮았으며, 신경망의 학습횟수가 늘어날 경우 학습자료 과적합(over-fitting)되어 정확도가 보다 저하되는 것으로 나타났다. 그래서 기존의 현재시간 t까지의 입력자료로 학습 후 익월(t+1)의 월유량을 예측하는 (t $\rightarrow$ t+1) 방법에서 현재시점 (t-n ~ t)까지의 입력자료를 이용하여 당월(t)의 월유량을 산정하는 (t$\rightarrow$t) 방법으로 재학습 후 모형검증을 수행한 결과 전술한 익월(t+1) 유량을 예측한 결과보다 재현성이 훨씬 향상된 것으로 분석되며평균예측률이 0.99로 홍수기 및 비홍수기에서도 뛰어난 정확성을 보이고 있다.

  • PDF

스토리보드에서의 학습자와 컴퓨터간의 상호작용 표현기법 (A Representation Model of Human-Computer Interactions in Storuboard)

  • 이근백;예홍진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.697-699
    • /
    • 1998
  • 멀티미디어 교수/학습 자료들을 제작함에 있어서 학습자가 컴퓨터와의 상호작용을 통해 직접 학습과정에 참여할 수 있도록 하기 위하여 시나리오의 내용에 따라 각각의 멀티미디어 요소를 정의하고 화면에 배치하는 것은 물론 시간흐름에 따라 화면상에서 이루어지는 사용자와의 상호작용을 스토리보드에 손쉽게 표현할 수 있어야 한다. 이를 위하여 본 논문에서는 스토리보드 작성기를 개발함에 있어서, 화면상에서 이루어지는 학습자와 컴퓨터간의 상호작용을 스토리보드에 표현하기 위한 모델을 제안하고, 그에 따른 스토리보드 작성기의 주요 기능과 작업 화면들을 설명하고 있다.

  • PDF

강화학습에 의해 학습된 기는 로봇의 성능 비교 (Performance Comparison of Crawling Robots Trained by Reinforcement Learning Methods)

  • 박주영;정규백;문영준
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.33-36
    • /
    • 2007
  • 최근에 인공지능 분야에서는, 국내외적으로 강화학습(reinforcement learning)에 관한 관심이 크게 증폭되고 있다. 강화학습의 최근 경향을 살펴보면, 크게 가치함수를 직접 활용하는 방법(value function-based methods), 제어 전략에 대한 탐색을 활용하는 방법(policy search methods), 그리고 액터-크리틱 방법(actor-critic methods)의 세가지 방향으로 발전하고 있음을 알 수 있다. 본 논문에서는 이중 세 번째 부류인 액터-크리틱 방법 중 NAC(natural actor-critic) 기법의 한 종류인 RLS-NAC(recursive least-squares based natural actor-critic) 알고리즘을 다양한 트레이스 감쇠계수를 사용하여 연속제어입력(real-valued control inputs)으로 제어되는 Kimura의 기는 로봇에 대해 적용해보고, 그 성능을 기존의 SGA(stochastic gradient ascent) 알고리즘을 이용하여 학습한 경우와 비교해보도록 한다.

  • PDF

다층 퍼셉트론 학습의 플라토 문제에 대한 정보기하 이론적 접근 (An Information Geometrical Approach on Plateau Problems in Multilayer Perceptron Learning)

  • 박혜영;아마리?이치;이일병
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제26권4호
    • /
    • pp.546-556
    • /
    • 1999
  • 다층 퍼셉트론은 다양한 응용 분야에 성공적으로 적용되고 있는 대표적인 신경회로망 모델이다. 그러나 다층 퍼셉트론의 학습에 사용되는 오류역전파 알고리즘으로 알려진 기울기 강하 학습법은 느린 수렴속도로 인해 실시간 처리가 요구되거나 시간에 따라 환경이 변하는 문제에의 적용이 불가능하다. 이러한 느린 수렴속도는 기울기 강하법을 사용한 학습과정에서의 오차함수의 기울기 변화가 극히 적어 오차의 감소가 거의 일어나지 않는 부분인 플라토에 기인하는 것으로 알려져있다. 본 논문에서는 정보기하이론의 관점에서 기존의 학습법에 사용되는 기울기의 이론적 문제를 지적하고, 그로부터 플라토 문제의 원인을 밝힌다. 또한 이를 바탕으로 정보기하이론에 의해 새롭게 정의되는 자연 기울기를 이용한 학습법을 제시하고, 이를 이용한 플라토 문제가 문제해결의 가능성을 분석적으로 고찰하고 실험을 통해 확인한다.

K_NN 분류기의 메모리 사용과 점진적 학습에 대한 연구 (A Study on the Storage Requirement and Incremental Learning of the k-NN Classifier)

  • 이형일;윤충화
    • 정보학연구
    • /
    • 제1권1호
    • /
    • pp.65-84
    • /
    • 1998
  • 메모리 기반 추론 기법은 분류시 입력 패턴과 저장된 패턴들 사이의 거리를 이용하는 교사 학습 기법으로써, 거리 기반 학습 알고리즘이라고도 한다. 메모리 기반 추론은 k_NN 분류기에 기반한 것으로, 학습은 추가 처리 없이 단순히 학습 패턴들을 메모리에 저장함으로써 수행된다. 본 논문에서는 기존의 k-NN 분류기보다 효율적인 분류가 가능하고, 점진적 학습 기능을 갖는 새로운 알고리즘을 제안한다. 또한 제안된 기법은 노이즈에 민감하지 않으며, 효율적인 메모리 사용을 보장한다.

  • PDF

능동 학습 기법을 활용한 한국어 금융 도메인 개체명 인식 데이터 구축 (Constructing Korean Named Recognition Dataset for Financial Domain Using Active Learning)

  • 정동호;허민강;김형철;박상원
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.82-86
    • /
    • 2020
  • 딥러닝 모델의 성능은 데이터의 품질과 양에 의해 향상된다. 그러나 데이터 구축은 많은 비용과 시간을 요구한다. 특히 전문 도메인의 데이터를 구축할 경우 도메인 지식을 갖춘 작업자를 활용할 비용과 시간이 더욱 제약적이다. 능동 학습 기법은 최소한의 데이터 구축으로 모델의 성능을 효율적으로 상승시키기 위한 방법이다. 다양한 데이터셋이 능동 학습 기법으로 구축된 바 있으나, 아직 전문 도메인의 한국어 데이터를 구축하는 연구는 활발히 수행되지 못한 것이 현실이다. 본 논문에서는 능동학습기법을 통해 금융 도메인의 개체명 인식 코퍼스를 구축하였고, 이를 통해 다음의 기여가 있다: (1) 금융 도메인 개체명 인식 코퍼스 구축에 능동 학습 기법이 효과적임을 확인하였고, (2) 이를 통해 금융 도메인 개체명 인식기를 개발하였다. 본 논문이 제안하는 방법을 통해 8,043문장 데이터를 구축하였고, 개체명 인식기의 성능은 80.84%로 달성되었다. 또한 본 논문이 제안하는 방법을 통해 약 12~25%의 예산 절감 효과가 있음을 실험으로 보였다.

  • PDF

도메인 판별기의 적대적 학습을 이용한 객체 검출 방법 (Object Detection Method Using Adversarial Learning on Domain Discriminator)

  • 김현석;이의진
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.91-94
    • /
    • 2022
  • 자율주행 자동차 개발 연구가 활발히 진행됨에 따라 객체 검출기의 성능이 중요하게 되었다. 딥러닝 기술의 발전하면서 객체 검출기의 성능도 큰 발전을 이루었다. 그에 따라 도로 위 차량 검출기의 성능도 발전하고 있으나 평상시 낮 도로상황에서 잘 동작하던 모델은 안개가 끼거나 밤 상황이 되면 제대로 동작하지 못하는 문제를 가지고 있다. 이유는 딥러닝 모델이 학습할 때 사용한 데이터셋의 정보에 따라 특정 도메인에 편향된 특성을 학습하기 때문이다. 따라서, 본 논문에서는 객체 검출 신경망에 도메인 판별기를 적용하여 이와 같은 도메인 이동 문제를 극복하는 모델을 제안한다. 모델의 성능을 Cityscapes 데이터셋과 Foggy Cityscapes 데이터셋을 사용하여 평가한 결과, 기존의 특정 도메인에서 학습한 모델보다 제안하는 모델의 검출 성능이 개선된다는 것을 확인하였다.

  • PDF

수학 교과서의 정당화 도입 실태 분석: 중학교 2학년 기하 영역을 중심으로 (The Research on the Actual Introduction of Justification to the New Mathematics Textbooks: Focus on the 8th Grade Geometry)

  • 김수철
    • 대한수학교육학회지:학교수학
    • /
    • 제16권2호
    • /
    • pp.201-218
    • /
    • 2014
  • 본 연구는 정당화의 도입과 관련하여 중학교 기하 영역에서 정당화를 어떻게 지도할 것인가에 대한 논의로부터 출발하여 개정 수학 교과서를 분석을 통해 정당화 지도 방향을 탐색하고 정당화 수업에 대한 시사점을 제공하기 위하여 수행되었다. 연구자는 두 명의 협력자와 함께 선행 연구의 분석 기준을 활용하여 중학교 수학 (2) 교과서의 기하단원을 분석하였으며, 그 결과, 교과서에 제시된 정당화 단계 및 유형을 여러 수준의 학습자들에게 적용 가능하도록 다양한 형태로 제시하려는 노력이 필요하며, 학습자들이 기하 학습을 지루하고 어렵게 느끼지 않도록 교과서의 내용을 적절히 재구성하여 학습자의 수준에 맞는 정당화 활동을 유도할 필요가 있음을 확인하였다.

  • PDF

RFID를 이용한 언어 학습기의 설계 및 구현 (Design and Implementation of Language Learning Device by Using RFID)

  • 최광원;김남형;박진웅;유영준;안정호;김진환;박찬영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.3-5
    • /
    • 2010
  • 최근 학습 패러다임은 문서 중심에서 지식 및 정보 기반으로 크게 변화하고 있다. 또한 유비쿼터스 사회로의 전환을 맞이하여 다양한 USN 기술 기반의 학습 연구가 활발히 진행 중이다. 그 중 RFID 기술 기반의 학습 연구에서는 대부분 유비쿼터스 학습 환경 구축에 관한 연구가 주를 이루고 있다. 따라서 실질적인 학습에 적용하는 연구의 결과는 미미하다. 본 논문에서는 RFID기술 기반의 다국어 학습기를 구현하였다. 태그를 인식하여 특정 사물을 사용자로 하여금 모국어뿐만 아니라 다국어로도 변역하여 여러 가지 언어들을 학습할 수 있게 지원하는 장치이다. 실험에서는 13.56Mhz의 RFID 및 PXA255A ARM보드 사용하여 학습기를 제작하여 효율성 테스트를 하였다.

대조학습을 활용한 새로운 의도 카테고리 발견 (Novel Intent Category Discovery using Contrastive Learning)

  • 서승연;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.107-112
    • /
    • 2023
  • 라벨 데이터 수집의 어려움에 따라 라벨이 없는 데이터로 학습하는 준지도학습, 비지도학습에 대한 연구가 활발하게 진행되고 있다. 본 논문에서는 그의 일환으로 Novel Intent Category Discovery(NICD) 문제를 제안하고 NICD 연구의 베이스라인이 될 모델을 소개한다. NICD 문제는 라벨이 있는 데이터와 라벨이 없는 데이터의 클래스 셋이 겹치지 않는다는 점에서 기존 준지도학습의 문제들과 차이가 있다. 제안 모델은 RoBERTa를 기반으로 두 개의 분류기를 추가하여 구성되며 라벨이 있는 데이터셋과 라벨이 없는 데이터셋에서 각각 다른 분류기를 사용하여 라벨을 예측한다. 학습방법은 2단계로 먼저 라벨이 있는 데이터셋으로 요인표현을 학습한다. 두 번째 단계에서는 교차 엔트로피, 이항교차 엔트로피, 평균제곱오차, 지도 대조 손실함수를 NICD 문제에 맞게 변형하여 학습에 사용한다. 논문에서 제안된 모델은 라벨이 없는 데이터셋에 대해 이미지 최고성능 모델보다 24.74 더 높은 정확도를 기록했다.

  • PDF