• 제목/요약/키워드: 기하 학습

검색결과 2,941건 처리시간 0.035초

기계학습을 기반으로 한 인터넷 학술문서의 효과적 자동분류에 관한 연구 (The Study on the Effective Automatic Classification of Internet Document Using the Machine Learning)

  • 노영희
    • 한국도서관정보학회지
    • /
    • 제32권3호
    • /
    • pp.307-330
    • /
    • 2001
  • 본 연구에서는 kNN분류기를 이용한 범주화 방법에 대한 성능 실험을 하였다. kNN분류기와 같은 대부분의 예제기반 자동 분류기법은 학습문서집단의 자질을 축소하게 되는데 자질을 몇 퍼센트 축소함으로써 높은 성능을 얻을 수 있는지를 알아보고자 하였다. 또한, kNN분류기는 학습문서집단에서 검증문서와 가장 유사한 k개의 학습문서를 찾아야 하는데, 이때 가장 적합한 k값은 얼마인지를 실험을 통하여 검증하여 보고자 하였다.

  • PDF

개별화학습을 위한 기하영역의 WBI 설계 및 구현 (A Design and Implementation of Web-Based Instruction in the Geometry Area for Individual-paced Learning)

  • 이재희;허순녕;이경현
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2000년도 추계학술발표논문집
    • /
    • pp.428-431
    • /
    • 2000
  • 웹 기반 교육은 웹을 수단으로 하여 지식을 생성·조직·전파하는 새로운 교육 방식으로 웹이 제공하는 상호작용성을 교육에 활용한다면 기존의 면대면 교육에서 부족했던 점을 보완할 수 있다. 본 논문에서는 웹을 수단으로 하는 웹 기반 교육의 학생 교수간 상호작용성을 활용하여 중학교 기하영역을 위한 웹 기반 코스웨어를 설계·구현하였다. 설계된 코스웨어는 기존의 독립형 컴퓨터를 기반으로 하는 멀티미디어 코스웨어의 한계성을 극복하고 학습자 중심의 능동적 참여 및 개별화 학습을 유도할 수 있는 장점을 지니며 중학 수학 교과 과정중 논증기하의 교수-학습효과를 극대화 할 수 있는 방안으로 평가된다.

  • PDF

영화도메인 한국어 감성사전의 자동구축과 평가 (Automatic Construction and Evaluation of Movie Domain Korean Sentiment Dictionary)

  • 조희련;최상현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.585-587
    • /
    • 2015
  • 본 연구에서는 네이버 영화평을 학습데이터로 사용하여 영화평 감성분류에 필요한 감성사전을 자동으로 구축하는 방법에 대해 제안한다. 이 때 학습데이터의 분량과 긍정/부정 영화평의 비율을 달리하여 네 가지의 학습데이터를 마련하고, 각 경우에 대하여 감성사전과 나이브베이즈(이하, NB) 분류기를 구축한 후, 이 둘의 성능을 비교했다. 네 종류의 학습데이터로 구축한 감성사전과 NB 분류기를 이용하여 영화평 감성 자동분류 성능을 비교한 결과, 네 경우의 평균 균형정확도는 감성사전이 78.2%, NB 분류기가 66.1%였다.

Haar Cascade와 DNN 기반의 실시간 얼굴 표정 및 음성 감정 분석기 구현 (Implementation of Real Time Facial Expression and Speech Emotion Analyzer based on Haar Cascade and DNN)

  • 유찬영;서덕규;정유철
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.33-36
    • /
    • 2021
  • 본 논문에서는 인간의 표정과 목소리를 기반으로 한 감정 분석기를 제안한다. 제안하는 분석기들은 수많은 인간의 표정 중 뚜렷한 특징을 가진 표정 7가지를 별도의 클래스로 구성하며, DNN 모델을 수정하여 사용하였다. 또한, 음성 데이터는 학습 데이터 증식을 위한 Data Augmentation을 하였으며, 학습 도중 과적합을 방지하기 위해 콜백 함수를 사용하여 가장 최적의 성능에 도달했을 때, Early-stop 되도록 설정했다. 제안하는 표정 감정 분석 모델의 학습 결과는 val loss값이 0.94, val accuracy 값은 0.66이고, 음성 감정 분석 모델의 학습 결과는 val loss 결과값이 0.89, val accuracy 값은 0.65로, OpenCV 라이브러리를 사용한 모델 테스트는 안정적인 결과를 도출하였다.

  • PDF

알츠하이머 치매환자 분류 방법 비교 분석 (Comparative Analysis of Classification Methods for Alzheimer's Dementia Patients)

  • 이재경;서진범;이재성;조영복
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.323-324
    • /
    • 2022
  • 전 세계적으로 고령화 사회가 지속됨에 따라 평균수명이 증가하여 고령화 문제가 심각해지고 있는 추세이다. 고령에 속하는 65세 이상 노인들이 자주 발병하는 알츠하이머 치매는 명확한 치료법이 존재하지 않아 발병 전 조기 발견 및 예방이 중요하다. 본 논문에서는 컨볼루션 신경망을 기반으로 한 알츠하이머 치매분류방법을 제안한 논문과, 그래프 합성곱 신경망, 다중 커널 학습 분류기, 기계학습, SVM 분류기 등의 방법으로 알츠하이머 치매 분류에 대한 논문을 소개하고, 각각의 제안 방법 및 특징에 대해 비교분석한다.

  • PDF

이미지 검색기를 통한 랜드마크 인식 (Landmark recognition through image searcher)

  • 김기덕;이근후
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.313-315
    • /
    • 2024
  • 본 논문에서는 이미지 검색기를 통한 랜드마크 인식 방법을 제안한다. 특정 랜드마크 데이터세트에서 라벨링을 하지 않은 비지도 학습을 통해서 이미지에서 랜드마크의 클래스 분류를 위한 특징을 추출한다. 학습된 모델을 랜드마크 데이터세트인 Paris6k 데이터세트와 Oxford5k 데이터세트에 적용하여 랜드마크 인식 정확도를 확인하였다. 성능과 속도를 강화하기 위해 이미지 특징 추출 모델로 ResNet 대신에 YOLO에서 사용된 CSPDarknet-53을 사용하여 모델의 크기를 줄이고 랜드마크 인식 정확도를 높였다. 그리고 모델로부터 추출된 특징의 수를 줄여 이미지 검색 시 소요되는 시간을 감소시켰다. 학습된 모델로 rOxford5k 데이터 세트에 적용 시 mAP 80.37, rParis6k에서 mAP 89.07을 얻었다.

  • PDF

이동 로봇 행위의 진화적 학습 (Evolutionary Learning of Mobile Robot Behaviors)

  • 심인보;윤중선
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.207-210
    • /
    • 2002
  • 진화와 학습 사이의 상호 연관성을 연구하기 위해 인공 진화기법(artificial evolutionary algorithm)과 신경회로망(neural networks)을 이용한 학습 기법들이 사용되어 왔다. 신경 회로망 구조를 가지는 이동 로봇의 제어기의 구조와 파라미터를 결정하기 위한 방법으로 진화적 학습(evolutionary learning) 방법이 제안되었다. 제안된 방법에서 진화적 학습은 실제 로봇을 통해 on-line 방식으로 이루어지며, 장애물 회피 문제를 통해 유용성을 검증하고 진화 과정에 학습이 미치는 영향을 살펴보았다. 그리고 수학적으로 제시되기 힘든 진화 학습의 평가에 설계자의 개입을 허용하는 인터액티브 진화 알고리즘(interactive evolutionary algorithm)방법을 모색해 보았다.

협력학습을 위한 E-learning 시스템의 개발 (E-learning System Development for Collaborative Learning)

  • 이삼순;박만곤
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 춘계학술발표대회논문집
    • /
    • pp.795-798
    • /
    • 2003
  • 정보통신기술의 급격한 발달은 교육의 패러다임을 변화시켰으며 새로운 학습의 장인 e-teaming을 가능하게 하였다. e-learning 시스템은 컨텐츠. 커뮤니티 및 등 방대한 정보를 체계적으로 제공하여 누구나, 언제, 어디서나 학습할 수 있게 한다. 이에 교수·학습의 방법 중 협동적이고 상호 보완적인 학습 방식인 협력학습과 e-learning을 결합시켜 협력학습을 위한 e-learning시스템을 개발하여 교수 학습의 효율성을 기하고자 한다.

  • PDF

의생명과학 기반 기학습된 워드 임베딩을 이용한 의생명과학 논문 속의 돌연변이-약물 관계 추출 연구 (Research on Identifying Mutation-Drug Relationship in Biomedical Literature Using Biomedical Context based pre-trained word embedding)

  • 김호준;원성연;강승우;이규범;김병건;김선규;강재우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.774-777
    • /
    • 2017
  • 의생명과학분야가 계속 발전됨에 따라 매일 평균 3천여 편에 달하는 방대한 양의 의생명과학분야 문헌들이 나오고 있다. 많은 연구가 진행될수록, 새로이 규명된 관계를 습득하고 체계화하는 일이 연구자와 의료계 종사자들에게 더 중요해지고 있다. 하지만 현재로서는 의생명과학분야에 어느 정도의 지식이 있는 사람이 직접 논문을 읽고 해당 논문에서 밝히고 있는 정보를 정리해야만 하는 상황이며, 이로는 기하급수적으로 쌓이는 정보의 양을 대처하기 어렵다. 이를 해결하기 위해 본 논문에서는 기계 학습을 통한 생명의료 객체관계 자동추출 연구를 이용하여 의생명과학분야의 정보를 체계화 하고자 한다. 본 논문에서는 돌연변이와 약물이 함께 등장하는 논문을 뽑아내어 글을 자연어 문장 단위로 나누었다. 추출한 돌연변이와 약물 간의 관계를 직접 사람에 의해 참거짓을 판명하였고, 해당 데이터셋을 기계학습에 이용하여 돌연변이와 약물 간의 관계를 학습시켰다. 최종적으로 GoogleNews의 기사들로 기학습된 워드임베딩, 의생명과학분야 문헌들을 이용하여 기학습된 워드임베딩을 이용하여 학습의 성능을 비교하였고, 의생명과학-문맥 특이적인 워드임베딩이 갖는 강점을 보고한다. 해당 연구를 통해 실제로 논문을 읽지 않고도 의생명과학분야 논문의 핵심적인 내용을 뽑아내는 자동화 시스템을 구축하는 데에 이바지하고, 의생명공학 연구자들의 연구에 핵심적인 도움이 되는 디딤돌이 되고자 한다.

투표 기반 서술형 주관식 답안 자동 채점 모델의 설계 및 구현 (Design and Implementation of an Automatic Scoring Model Using a Voting Method for Descriptive Answers)

  • 허정만;박소영
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권8호
    • /
    • pp.17-25
    • /
    • 2013
  • 본 논문에서는 투표기법을 이용하여 서술형 주관식 문제에 대한 학습자 답안을 자동으로 채점하는 모델을 제안한다. 제안하는 방법은 모델 구축 비용을 줄이기 위해서, 문제 유형별로 세분화하여 서술형 주관식 답안 자동 채점 모델을 따로 구축하지 않는다. 제안하는 방법은 서술형 주관식 답안 자동 채점에 유용한 자질을 추출하기 위해서, 모범 답안과 학습자 답안을 비교한 결과를 바탕으로 다양한 자질을 추출한다. 제안하는 방법은 답안 채점 결과의 신뢰성을 높이기 위해서, 각 학습자 답안을 여러 기계학습 기반 분류기를 이용하여 채점하고, 각 채점 결과를 투표하여 만장일치로 선택한 채점 결과를 최종 채점 결과로 결정한다. 실험결과 기계학습 기반 분류기 C4.5만 사용한 채점 결과는 정확률이 83.00%인데 반해, 기계학습 기반 분류기 C4.5, ME, SVM에서 만장일치로 선택한 채점 결과는 정확률이 90.57%까지 개선되었다.