• Title/Summary/Keyword: 기하형상 모델링

Search Result 94, Processing Time 0.029 seconds

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Model Development (비탄성 국부좌굴을 고려한 철골 모멘트 접합부 회전능력 평가를 위한 모델 개발)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.617-624
    • /
    • 2008
  • Well-designed steel moment connections will undergo local buckling before they exhaust their available rotation capacity, and inelastic post-buckling deformation plays a major role in defining the connection rotation capacity. An approximate analytical method to model strength degradation and failure of beam plastic hinges due to local buckling and estimation of the seismic rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames under both monotonic and cyclic loading conditions is proposed in this study. This method is based on the plastic mechanism and a yield line plastic hinge (YLPH) model whose geometry is determined using the shapes of the buckled plastic hinges observed in experiments. The proposed YLPH model was developed for the improved WUF-W and RBS connections and validated in comparison with experimental data. The effects of the beam section geometric parameters on the rotation capacity were discussed in the companion paper (parametric studies).

An Effective Data Exchange of Curves (곡선의 효율적 자료 교환)

  • 김혁진
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.3
    • /
    • pp.31-40
    • /
    • 1998
  • Recently computer graphics and CAD systems of many kinds have been developed. and this trends will be more increased in the future because the application fields are diverse However, data exchange problems between these systems will be occurred as the system kinds increase. Standards for solving these problems are made by IGES and STEP. etc, Nevertheless, it is unsatisfactory now because data exchange between different systems is not running well with reliability and efficiency. Because vendors implement with different ways, data exchange of the curves and surfaces between different systems which are based in the geometric modeling system, does not satisfy. This paper is a research for curve conversion in the data exchange between different systems. Also this paper analyzed the transferring data which are effectively conversed the curves among the four different types of curves in the less important curve shape environment.

  • PDF

TIN based Matching using Stereo Airphoto and Airborne LiDAR (입체항공사진과 항공 LiDAR를 이용한 TIN 기반 정합)

  • Kim, Hyung-Tae;Han, Dong-Yeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.4
    • /
    • pp.443-452
    • /
    • 2008
  • To deduce 3D linear information which express shapes of buildings out of airphoto by fusion of airphoto and LiDAR data, this research went through 2 process. First, research made LiDAR data into projected data of 2D based on airphoto. For this, the virtual points were added to solve the visual problem of building boundary area which has poor information because the attribute in LiDAR data. Research construct irregular triangular nets from modified LiDAR data and judge visual triangular nets out of image. Through this, research can make reference to information of triangular nets in each image pixel. Second, 3D information was extracted from stereo images segments by combining extracted information of visible region and 2D irregular triangular nets. Matching way based on TIN for segments from stereo images was used. Matching condition based on TIN can improve about 20% of edge matching accuracy compared to existing quadrilateral condition of epipolar geometry.

Parametric Modeling and Numerical Simulation of 3-D Woven Materials (3차원 엮임 재료의 파라메트릭 모델링 및 수치적 재료 특성 분석)

  • Sim, Kichan;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.331-338
    • /
    • 2020
  • In this study, the characteristic of a 3-D micro-woven material, which is one of the newly developed periodic open-cell structure, is analyzed through various computational simulations. To increase the accuracy of the numerical simulations, the distance between each directional wire is parameterized using six design variables, and its model geometry is precisely discretized using tetrahedron elements. Using the improved computational model, the material properties of the mechanical, thermal, and fluidic behavior are investigated using commercial software and compared with the previous experimental results. By changing the space between the x- and y-directional wires, a parametric test is performed to determine the tendency of the change in the material properties. In addition, the correlation between two different material properties is investigated using the Ashby chart. The result can further be used in determining the optimal pattern and wire spacing in 3-D micro-woven materials.

Isogeometric Analysis of Lattice Structures Having Compression-Twist Coupled Deformation (압축-비틀림이 결합된 격자구조의 아이소-지오메트릭 해석)

  • Kang, Se-Hyeon;Choi, Myung-Jin;Oh, Myung-Hoon;Yoon, Min-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.287-292
    • /
    • 2021
  • We utilized the isogeometric analysis (IGA) method that uses NURBS basis functions in CAD systems, to account for the geometric exactness of a geometrically exact beam deformation, on a new type of metamaterial, twist-translation coupled structure showing a large twist angle. A two-dimensional unit cell structure was embedded in a cylindrical wall, using free-form deformation and an appropriate interpolation scheme. A parametric study on the effects of the dimensions of the cylinder and the number of cells, on the twisting angle was performed. Furthermore, the mechanism of the twist-translation coupled metamaterial was explored through numerical examples.

3D Human Shape Estimation from a Silhouette Image by using Statistical Human Shape Spaces (통계적 신체 외형 데이터베이스를 활용한 실루엣으로부터의 3차원 인체 외형 예측)

  • Dasol Ahn;Sang Il Park
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.1
    • /
    • pp.13-22
    • /
    • 2023
  • In this paper, we present a method for estimating full 3D shapes from given 2D silhouette images of human bodies. Because the silhouette only consists of the partial information on the true shape, it is an ill-posed problem. To address the problem, we use the statistical human shape space obtained from the existing large 3D human shape database. The method consists of three steps. First, we extract the boundary pixels and their appropriate normal vectors from the input silhouette images. Then, we initialize the correspondences of each pixel to the vertex of the statistically-deformable 3D human model. Finally, we numerically optimize the parameters of the statistical model to fit best to the given silhouettes. The viability and the robustness of the method is demonstrated with various experiments.

K-SMPL: Korean Body Measurement Data Based Parametric Human Model (K-SMPL: 한국인 체형 데이터 기반의 매개화된 인체 모델)

  • Choi, Byeoli;Lee, Sung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.4
    • /
    • pp.1-11
    • /
    • 2022
  • The Skinned Multi-Person Linear Model (SMPL) is the most widely used parametric 3D Human Model optimized and learned from CAESAR, a 3D human scanned database created with measurements from 3,800 people living in United States in the 1990s. We point out the lack of racial diversity of body types in SMPL and propose K-SMPL that better represents Korean 3D body shapes. To this end, we develop a fitting algorithm to estimate 2,773 Korean 3D body shapes from Korean body measurement data. By conducting principle component analysis to the estimated Korean body shapes, we construct K-SMPL model that can generate various Korean body shape in 3D. K-SMPL model allows to improve the fitting accuracy over SMPL with respect to the Korean body measurement data. K-SMPL model can be widely used for avatar generation and human shape fitting for Korean.

New Development of Hybrid Concrete Support Structure with Driven Piles for Offshore Wind Turbines (하이브리드 해상풍력 파일 기초 콘크리트 지지구조(MCF) 개발)

  • Kim, Hyun Gi;Kim, Bum Jun;Kim, Ki Du
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.307-320
    • /
    • 2013
  • This paper proposes a new hybrid support structure by the driven piles which removes disadvantages of the existing type of support structure for offshore wind turbines. The hybrid type of support structure is combined with concrete cone and steel shaft, and is supported not only by gravity type foundations but also by driven piles. For three dimensional analysis of the huge and thick concrete structure, a solid-shell element that is capable of exact modeling and node interpolations of stresses is developed. By applying wave theory of stream function and solid-shell element in XSEA simulation software for fixed offshore wind turbines, a quasi-static analysis and natural frequency analysis of proposed support structure are performed with the environmental condition on Southwest Coast in Korea. In the result, lateral displacement is not exceed allowable displacement and a superiority of dynamic behavior of new hybrid support structure is validated by natural frequency analysis. Consequently, the hybrid support structure presented in this study has a structural stability enough to be applied on real-site condition in Korea. The optimized structures based on the preliminary design concept resulted in an efficient structure, which reasonably reduces fabrication costs.

Development of a New Lumped-Mass Stick Model using the Eigen-Properties of Structures (구조물의 동적 고유특성을 이용한 새로운 집중질량모델 개발)

  • Roh, Hwa-Sung;Youn, Ji-Man;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.19-26
    • /
    • 2012
  • For a seismic design or performance evaluation of a structure, an experimental investigation on a scale model of the structure or numerical analysis based on the finite element model is considered. Regarding the numerical analysis, a three-dimensional finite element analysis is performed if a high accuracy of the results is required, while a sensitivity or fragility analysis which uses huge seismic ground motions leads to the use of a lumped-mass stick model. The conventional modeling technique to build the lumped-mass stick model calculates the amount of the lumped mass by considering the geometric shape of the structure, like a tributary area. However, the eigenvalues of the conventional model obtained through such a calculation are normally not the same as those of the actual structure. In order to overcome such a deficiency, in this study, a new lumped mass stick model is proposed. The model is named the "frequency adaptive-lumped-mass stick model." It provides the same eigenvalues and similar dynamic responses as the actual structure. A non-prismatic column is considered as an example, and its natural frequencies as well as the dynamic performance of the new lumped model are compared to those of the full-finite element model. To investigate the damping effect on the new model, 1% to 5% of the critical damping ratio is applied to the model and the corresponding results are also compared to those of the finite element model.

Mechanical Properties of Metallic Additive Manufactured Lattice Structures according to Relative Density (상대 밀도에 따른 금속 적층 제조 격자 구조체의 기계적 특성)

  • Park, Kwang-Min;Kim, Jung-Gil;Roh, Young-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.19-26
    • /
    • 2021
  • The lattice structure is attracting attention from industry because of its excellent strength and stiffness, ultra-lightweight, and energy absorption capability. Despite these advantages, widespread commercialization is limited by the difficult manufacturing processes for complex shapes. Additive manufacturing is attracting attention as an optimal technology for manufacturing lattice structures as a technology capable of fabricating complex geometric shapes. In this study, a unit cell was formed using a three-dimensional coordinate method. The relative density relational equation according to the boundary box size and strut radius of the unit cell was derived. Simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) with a controlled relative density were designed using modeling software. The accuracy of the equations for calculating the relative density proposed in this study secured 98.3%, 98.6%, and 96.2% reliability in SC, BCC, and FCC, respectively. A simulation of the lattice structure revealed an increase in compressive yield load with increasing relative density under the same cell arrangement condition. The compressive yield load decreased in the order of SC, BCC, and FCC under the same arrangement conditions. Finally, structural optimization for the compressive load of a 20 mm × 20 mm × 20 mm structure was possible by configuring the SC unit cells in a 3 × 3 × 3 array.