DOI QR코드

DOI QR Code

New Development of Hybrid Concrete Support Structure with Driven Piles for Offshore Wind Turbines

하이브리드 해상풍력 파일 기초 콘크리트 지지구조(MCF) 개발

  • Kim, Hyun Gi (Dept. of Civil and Environmental System Engineering, Konkuk University) ;
  • Kim, Bum Jun (Dept. of Civil and Environmental System Engineering, Konkuk University) ;
  • Kim, Ki Du (Dept. of Civil and Environmental System Engineering, Konkuk University)
  • 김현기 (건국대학교 사회환경시스템공학과) ;
  • 김범준 (건국대학교 사회환경시스템공학과) ;
  • 김기두 (건국대학교 사회환경시스템공학과)
  • Received : 2013.04.30
  • Accepted : 2013.06.11
  • Published : 2013.06.27

Abstract

This paper proposes a new hybrid support structure by the driven piles which removes disadvantages of the existing type of support structure for offshore wind turbines. The hybrid type of support structure is combined with concrete cone and steel shaft, and is supported not only by gravity type foundations but also by driven piles. For three dimensional analysis of the huge and thick concrete structure, a solid-shell element that is capable of exact modeling and node interpolations of stresses is developed. By applying wave theory of stream function and solid-shell element in XSEA simulation software for fixed offshore wind turbines, a quasi-static analysis and natural frequency analysis of proposed support structure are performed with the environmental condition on Southwest Coast in Korea. In the result, lateral displacement is not exceed allowable displacement and a superiority of dynamic behavior of new hybrid support structure is validated by natural frequency analysis. Consequently, the hybrid support structure presented in this study has a structural stability enough to be applied on real-site condition in Korea. The optimized structures based on the preliminary design concept resulted in an efficient structure, which reasonably reduces fabrication costs.

기존 해상풍력발전 지지구조물의 단점을 보완한 신형식의 파일 기초 하이브리드 지지구조물을 본 연구에서 제안하였다. 이 지지구조는 콘크리트 자중을 이용한 중력식 기초의 개념으로부터 수정되어 4개의 파일로 지지되며, 강재 샤프트와 원추형 콘크리트가 결합된 하이브리드 형식이다. 규모가 크고 두꺼운 콘크리트의 3차원 해석을 위해, 정확한 기하형상 모델링과 응력의 절점 보간이 가능한 솔리드-쉘 입체요소를 개발하였다. 해양구조물 전용 유한요소 프로그램인 XSEA에 탑재된 솔리드-쉘 요소와 Stream Function 파랑 이론을 적용하여, 제안한 하이브리드 지지구조물에 대해 서남해안 지역의 환경조건을 적용한 준정적 해석 및 고유진동수 해석을 실시하였다. 해석결과, 수평변위가 허용변위 이내로 나타났고, 고유진동수 해석을 통해 하이브리드 구조형식의 동적거동에 대한 우수성을 입증하였다. 결과적으로, 파일지지 하이브리드 지지구조물은 우리나라 서남해안 지역과 같이 연약지반에 적용 할 수 있는 충분한 안정성을 가진 것으로 평가 되었고, 각 부재에 대한 최적화 연구를 통해 경제성 확보가 가능한 것으로 검토되었다.

Keywords

References

  1. Subrata Chakrabarti (2005) Handbook of offshore engineering, Elsevier Science Ltd., U.S.A.
  2. Nikolasos, N. (2004) Deep water offshore wind technologies, University of Strathclyde.
  3. Kenneth Perire, Hendrick Nonneman, and Eric Bosschem (2009) Gravity Base Foundation for the Thornton Bank Offshore Wind Farm, Terra et Aqua, Vol. 115, pp.19-29.
  4. COWI (2010) Gravity Base Foundation for Red Sand2, Denmark.
  5. Vici Ventus (2010) Offshore Wind Turbines: Concrete Foundations, Norway.
  6. Ahmad, S., Irons, B.M., and Zienkiewicz, O.C. (1970) Analysis of Thickand Thin Shell Structures by Curved Finite Elements. Int. J. Numer. Meth. Eng. Vol. 2, pp.419-451. https://doi.org/10.1002/nme.1620020310
  7. Hauptmann, R. and Schweizerhof, K. (1998) A systematic development of solid-shell element formulations for linear and non-linear analysis employing only displacement degrees of freedom. Int. J. Numer. Meth. Eng. Vol. 42, pp.49-69. https://doi.org/10.1002/(SICI)1097-0207(19980515)42:1<49::AID-NME349>3.0.CO;2-2
  8. Sze, K.Y. and Yao, L.Q. (2000) A hybrid stress ANS solid-shell element and its generalization for smart structure modeling, Part I:Solid-shell element formulation. Int. J. Numer. Meth. Eng. Vol. 48, pp.545-564. https://doi.org/10.1002/(SICI)1097-0207(20000610)48:4<545::AID-NME889>3.0.CO;2-6
  9. Simo, J.C. Rifai, M.S. (1990) A class of mixed assumed strain methods and the methods of incompatible modes. Int. J. Numer. Meth. Eng. Vol. 29, pp.1595-1638. https://doi.org/10.1002/nme.1620290802
  10. Kim, K.D., Lomboy, G.R., and Han, S.C. (2003) A co-rotational 8-node assumed strain shell element for postbuckling analysis of laminated composite plates and shells. Comput. Mech. Vol. 30, No. 4, pp.330-342. https://doi.org/10.1007/s00466-003-0415-6
  11. Kim, K.D., Liu, G.Z., and Han, S.C. (2005), A Resultant 8-node Solid-shell Element for Geometrically Nonlinear Analysis. Comput. Mech. Vol. 35, pp.315-331. https://doi.org/10.1007/s00466-004-0606-9
  12. 김기두, 심종성, 최수영(2012) 천해용 파일 기초에 의한 신형식 해상풍력 콘크리트 및 강-합성 지지구조물, 대한토목학회지, 제60권, 제7호, pp.33-38. Kim, K.D., Sim, J.S., and Choi, S.Y. (2012) New concrete and steel support structure of offshore wind turbine using pile foundation in 40m depth. KSCE, Vol. 60, Issue 7, pp.33-38.
  13. Kim, K.D. and Anaphat Manovachirasan (2013) New Development of Cost-Efficient Multi-pile Concrete Foundation (MCF) for Offshore Wind Turbine, International Conference, Marine 2013, Hamburg, German.
  14. Konkuk Univ. (2012) Nonlinear dynamic analysis, .
  15. Pramin Norachan (2012), A Co-Rotational 8-Node Solid-Shell Element for Three-Dimensional Analysis of Prestressed Concrete Structures, Ph.D. Thesis, Konkuk University.
  16. DNV-OS-J101 (2011) Design of Offshore Wind Turbine Structures, Det Norske Veritas, Offshore Standard.
  17. DNV-RP-C205 (2007) Environmental Conditions and Environmental Loads, Recommended Practice, Det Norske Veritas, Offshore Standard.
  18. Oh, K.Y., Kim, J.Y., and Lee, J.S. (2013) Preliminary evaluation of monopile foundation dimensions for an offshore wind turbine by analyzing hydrodynamic load in the frequency domain, Renewable Energy, Vol. 54, pp.211-218. https://doi.org/10.1016/j.renene.2012.08.007
  19. Jonkman, J., Butterfield, S., and Musial, W., and Scott, G. (2009) Definition of a 5-MW Reference Wind Turbine for Offshore System Development, National Renewable Energy Laboratory, NREL/TP-500-38060.

Cited by

  1. Experimental Study for Concrete Base to Sleeve connection of Hybrid Substructure for Offshore Wind Turbine vol.17, pp.1, 2016, https://doi.org/10.5762/KAIS.2016.17.1.79
  2. Seismic Analysis for Multi-pile Concrete Foundation in 5MW Class Offshore Wind Turbine vol.29, pp.3, 2016, https://doi.org/10.7734/COSEIK.2016.29.3.209
  3. Three-dimensional Analysis of Prestressed Concrete Offshore Wind Turbine Structure Under Environmental and 5-MW Turbine Loads pp.1993-5048, 2018, https://doi.org/10.1007/s11804-018-0021-9
  4. Analysis of Piled Concrete Foundation for a 3-MW Class Offshore Wind Turbine along the Southwest Coast in Korea vol.8, pp.3, 2013, https://doi.org/10.3390/jmse8030215
  5. Design Optimization of Conical Concrete Support Structure for Offshore Wind Turbine vol.13, pp.18, 2013, https://doi.org/10.3390/en13184876