• Title/Summary/Keyword: 기하학적 타당성

Search Result 95, Processing Time 0.026 seconds

Stress Intensity Factor Analysis System for 3D Cracks Using Fuzzy Mesh (퍼지메쉬를 이용한 3차원 균열에 대한 응력확대계수 해석 시스템)

  • Lee, Joon-Seong;Lee, Eun-Chul;Choi, Yoon-Jong;Lee, Yang-Chang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.122-126
    • /
    • 2008
  • Integrating a 3D solid modeler with a general purpose FEM code, an automatic stress intensity factor analysis system of the 3D crack problems has been developed. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated and quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. Finally, the complete finite element(FE) model generated, and a stress analysis is performed. This paper describes the methodologies to realize such functions, and demonstrates the validity of the present system.

Stability and P-Δ Analysis of Generalized Frames with Movable Semi-Rigid Joints (일반화된 부분강절을 갖는 뼈대구조물의 안정성 및 P-Δ 해석)

  • Min, Byoung Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.409-422
    • /
    • 2013
  • For stability design and P-${\Delta}$ analysis of steel frames with semi-rigid connections, the explicit form of the exact tangential stiffness matrix of a generalized semi-rigid frame element having rotational and translational connections is firstly derived using the stability functions. And its elastic and geometric stiffness matrix is consistently obtained by Taylor series expansion. Next depending on connection types of semi-rigidity, the corresponding tangential stiffness matrices are degenerated based on penalty method and static condensation technique. And then numerical procedures for determination of effective buckling lengths of generalized semi-rigid frames members and P-${\Delta}$ and shortly addressed. Finally three numerical examples are presented to demonstrate the validity and accuracy of the proposed method. Particularly the minimum braced frames and coupled buckling modes of the corresponding frames are investigated.

Nonlinear Analysis of Reinforced and Prestressed Concrete Slabs (철근 및 프리스트레스트 콘크리트 슬래브의 비선형 해석)

  • 최정호;김운학;신현목
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.223-234
    • /
    • 1996
  • The purpose of this paper is to present an analysis method by using the finite element method which can exactly analyze load-deflection relationships, crack propagations. and stresses and strains of reinforcements, tendons, and concrete in behaviors of elastic. inelastic and ultimate ranges of reinforced and prestressed concrete slabs under monotonically increasing loads. For t h i s purpose, the m a t e r i a l and geometric nonlinearities are taken into account in this study. The total Lagrangian formulation based upon the simplified Von Karman strain expressions is used to take into account the geometric nonlinearities of the structure. The material nonlinearities are taken into account by comprising the tension, compression. and shear models of cracked concrete and models for reinforcements and tendons in the concrete : and also a so-called smeared crack model is incorporated. The reinforcements and t,endons are assumed to be in a uniaxial stress state and are modelled as smeared layers of equivalent thickness. For the verification of application and validity of the method proposed in this paper, several numerical examples are analyzcd and compared with experimental results. As a result, this method can successfully predict the nonlinear and inelastic behaviors throughout the fracture of reinforced and prestressed concrete slabs.

Exact Tangent Stiffness Matrix and Buckling Analysis Program of Plane Frames with Semi-Rigid Connections (부분강절로 연결된 평면뼈대구조의 엄밀한 접선강도행렬 및 안정성 해석프로그램 개발)

  • Min, Byoung Cheol;Kyung, Yong Soo;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.81-92
    • /
    • 2008
  • Generally the connection of members is defined as hinge or rigid. But, real joints on structure have to be considered semi-rigid connections because this permits relative rotation for members on joints. The purpose of this study is to derive a generalized tangential stiffness matrix of frames with semi-rigid connections and to develop a buckling analysis program. For the exact stiffness matrix, an accurate displacement field is introduced using an equilibrium equation for beam-columns under the bending and axial forces. Also, stability functions that consider sway deformation and force-displacement relations with rotational spring on ends were defined. In order to illustrate the accuracy of this study and the characteristics of semi-rigid for system buckling load, samples of angle-, portal- and 3-story frames with semi-rigid connections are presented, where the proposed approach is found to be in excellent agreement with other research results. Meanwhile, the application of codes such as Eurocode 3 and LRFD led to significant inaccuracies.

Grid Strut-Tie Model Approach for Structural Concrete Design (콘크리트 구조부재의 설계를 위한 격자 스트럿-타이 모델 방법)

  • Yun, Young Mook;Kim, Byung Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.621-637
    • /
    • 2006
  • Although the approaches implementing strut-tie models are the valuable tools for designing discontinuity regions of structural concrete, the approaches of the current design codes have to be improved for the design of structural concrete subjected to complex loading and geometrical conditions because of the uncertainties in the selection of strut-tie model, in the use of an indeterminate strut-tie model, and in the effective strengths of struts and nodal zones. To improve the uncertainties, a grid struttie model approach is proposed in this study. The proposed approach, allowing to perform a consistent and effective design of structural concrete, employs an initial grid strut-tie model in which various load combinations can be considered. In addition, the approach performs an automatic selection of an optimal strut-tie model by evaluating the capacities of struts and ties using a simple optimization algorithm. The validity and effectiveness of the proposed approach is verified by conducting the analysis of the four reinforced concrete deep beams tested to failure and the design of shearwalls with two openings.

Capacitively-coupled Resistivity Method - Applicability and Limitation (비접지식 전기비저항 탐사 - 적용성과 한계)

  • Lee Seong Kon;Cho Seong-Jun;Song Yoonho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.23-32
    • /
    • 2002
  • Capacitively-coupled resistivity (CCR) system is known to be very useful where galvanic contact to earth is impossible, such as the area covered with thick ice, snow, concrete or asphalt. This system injects current non-galvanically, i.e., capacitively to earth through line antenna and measures potential difference in a same manner. We derived geometric factor for two types of antenna configuration and presented the method of processing and converting the data obtained with CCR system suitable to conventional resistivity inversion analysis. The CCR system, however, has limitations on use at conductive area or electrically noisy area since it is very difficult to inject sufficient current to earth with this system as with conventional resistivity system. This causes low SM ratio when acquiring data with CCR system and great care must be taken in acquiring data with this system. Additionally the uniform contact between line antennas and earth is also crucial factor to obtain good S/N ratio data. The CCR method, however, enables one to perform continuous profiling over a survey line by dragging entire system and thus will be useful in rapid investigation of conductivity distribution in shallow subsurface.

Development of Meta Model of Transfer Function for Wavemaker of Deep Ocean Engineering Basin (심해공학수조 조파기 전달함수 근사 모델 개발)

  • Seunghoon, Oh;Eun-Soo, Kim;Sungjun, Jung
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.471-482
    • /
    • 2022
  • This study aims to investigate the characteristics of wave generation in a deep ocean engineering basin and to develop a meta-model of the transfer function of the wavemaker that reflects the geometric characteristics of the deep ocean engineering basin. To this end, the two-dimensional frequency domain boundary element method was applied to achieve an efficient analysis that reflects the geometric characteristics of the deep ocean engineering basin. The developed numerical method was validated through comparison with the analytical solution. Numerical analyses were conducted for the boundary value problem of the wavemaker according to various periods and the positions of the movable bottom. The numerical results were used to investigate the effect of the geometric characteristics of the deep ocean engineering basin on the transfer function of the wavemaker, and the effect of depth on wave generation was checked by changing the position of the movable bottom. To efficiently utilize the various results of the boundary element method, a meta-model, an approximate model of the transfer function of the wave maker, was developed using a thin plate spline interpolation model. The validity of the developed meta-model was confirmed through a comparison of the results of the model tests.

An explicit solution of residence time distribution for analyzing one-dimensional solute transport in streams (하천에서 1차원 오염물질 거동 해석을 위한 정체시간분포의 양해적 해석해)

  • Byunguk Kim;Siyoon Kwon;Il Won Seo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.518-518
    • /
    • 2023
  • 자연하천에서 오염물질의 혼합 거동은 비균일한 지형학적 요인으로 인해 매우 복잡한 특성을 나타낸다. 일반적으로 오염물질 거동 모델링에서는 수체에서의 혼합을 Fick의 법칙에 따라 유속에 의한 이송과 난류에 의한 확산으로 계산하고, 국부적인 정체현상 등에 의한 non-Fickian 혼합을 야기하는 하천의 특성을 기하학적 지형 형상으로 구현하여 실제 현상에 근접한 혼합 거동을 재현한다. 하지만 계산의 효율성을 위하여 모델링의 차원을 낮추는 경우, 하천의 지형을 경계조건으로 고려할 수 없게 된다. 특히, 1차원 모델링의 경우 하천의 비균일성을 무시하고 1개의 유선으로 간주하며, 이 경우 non-Fickian 물질이동 해석을 위한 추가적인 현상학적 해석이 필요하다. 지난 50년간, non-Fickian 물질이동 해석을 위한 다양한 현상학적 모형이 제시되어 왔다. 하천을 흐름영역과 정체영역으로 구분하고 두 개의 영역 사이의 물질교환 속도를 모델링하거나, Random walk 개념으로 물질이 이동하는 경우와 이동하지 않는 경우를 확률론적으로 모델링하거나, 물질이 정체되었을 때 다시 빠져나오는 시간을 모델링하는 경우가 그 예이다. 본 연구에서는 선행연구에서 제시한 음함수 형태의 현상학적 모형을 기반으로, 수치적 반복계산 없이 상류 경계에서 임의의 형태의 농도곡선(shape-free breakthrough curve)을 갖는 오염물질운(cloud)이 일정 거리를 유하하며 발생하는 변화를 예측할 수 있는 해를 제시한다. 본 연구의 방법론은 추적법(routing procedure)을 활용한 Fickian 혼합 해석, 전달함수(transfer function) 형태의 정체시간분포 해석, 그리고 라플라스 도메인에서의 해석해 유도를 포함한다. 본 연구에서 제시된 해는 2020년 경상북도 김천시에 위치한 감천의 4.5 km 구간에서 수행한 추적자 실험의 현장 자료를 통해 정확도를 검증하여 타당성을 입증하였다.

  • PDF

Analysis of Camera Rotation Using Three Symmetric Motion Vectors in Video Sequence (동영상에서의 세 대칭적 움직임벡터를 이용한 카메라 회전각 분석)

  • 문성헌;박영민;윤영우
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.2
    • /
    • pp.7-14
    • /
    • 2002
  • This paper proposes a camera motion estimation technique using special relations of motion vectors of geometrically symmetrical triple points of two consecutive views of single camera. The proposed technique uses camera-induced motion vectors and their relations other than feature points and epioplar constraints. As contrast to the time consuming iterations or numerical methods in the calculation of E-matrix or F-matrix induced by epipolar constraints, the proposed technique calculates camera motion parameters such as panning, tilting, rolling, and zooming at once by applying the proposed linear equation sets to the motion vectors. And by devised background discriminants, it effectively reflects only the background region into the calculation of motion parameters, thus making the calculation more accurate and fast enough to accommodate MPEG-4 requirements. Experimental results on various types of sequences show the validity and the broad applicability of the proposed technique.

  • PDF

Dynamic Analysis of Guyline in the Offshore Guyed Towers Considering Sea Bed Contact Conditions (심해용 Guyed Tower 계류선의 해저면과의 접촉조건을 고려한 동적 해석)

  • 이명우;박우선;박영석
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.4
    • /
    • pp.244-254
    • /
    • 1991
  • The numerical analysis on tile behaviour of mooring system in the offshore guyed tower is presented. The governing equilibrium equations are derived by the principle of virtual work. The drag and inertia effects of fluid are included in a Morrison type equation. The finite element method is used in the computation. Geometric nonlinearities for the analysis of the mooring line are considered in which both modified Newton-Raphson method and Newmark-$\beta$ method are employed. Numerical experiments show the validity and the capability of the developed mathematical formulation.

  • PDF