• Title/Summary/Keyword: 기하학적 적응제어

Search Result 14, Processing Time 0.025 seconds

Design of a Geometric Adaptive Straightness Controller for Shaft Straightening Process (축교정을 위한 기하학적 진직도 적응제어기 설계)

  • Kim, Seung-Cheol;Jeong, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2451-2460
    • /
    • 2000
  • In order to minimize straightness error of deflected shaft, a geometric adaptive straightness controller system is studied. A multi-step straightening and a three-point bending process have been developed for the geometric adaptive straightness controller. Load-deflection relationship, on-line identification of variations of material properties, on-line springback prediction, and real-time hydraulic control methodology are studied for the three-point bending process. By deflection pattern analysis and fuzzy self-learning method in the multi-step straightening process, a straightening point and direction, desired permanent deflection and supporting condition are determined. An automatic straightening machine has been fabricated for rack bars by using the developed ideas. Validity of the proposed system is verified through experiments.

Geometric Modeling and Trajectory Control Design for an Excavator Mechanism (굴삭기 작업장치부의 기하학적 동역학 모델링 및 궤적 제어에 관한 연구)

  • Kim, S.H.;Yoo, S.J.;Lee, K.I.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2007
  • During the last few decades, excavation automation has been investigated to protect the operator from the hazardous working environment and to relieve the cost of the skilled operator. Therefore, a number of modelling and controller design methods of the hydraulic excavator are proposed in many literatures to realize the excavation automation. In this article, a geometric approach far the multi-body system modeling is adopted to develop the excavator mechanism model that contains 4 kinematic loops and 12 links. Considering a simple soil mechanism model with a number of uncertain soil parameters, an adaptive trajectory tracking control strategy based on the developed excavator model is proposed. The improved performance of the designed controller over the simple PID controller is validated via the simulation study.

  • PDF

Geometric Analysis of Convergence of FXLMS Algorithm (FXLMS 알고리즘 수렴성의 기하학적 해석)

  • Kang Min Sig
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.1
    • /
    • pp.40-47
    • /
    • 2005
  • This paper concerns on Filtered-x least mean square (FXLMS) algorithm for adaptive estimation of feedforward control parameters. The conditions for convergence in ensemble mean of the FXLMS algorithm are derived and the directional convergence properties are discussed from a new geometric vector analysis. The convergence and its directionality are verified along with some computer simulations.

Identification of guideway errors in the end milling machine using geometric adaptive control algorithm (기하학적 적응제어에 의한 엔드밀링머시인의 안내면 오차 규명)

  • 정성종;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.163-172
    • /
    • 1988
  • An off-line Geometric Adaptive Control Scheme is applied to the milling machine to identify its guideway errors. In the milling process, the workpiece fixed on the bed travels along the guideway while the tool and spindle system is fixed onto the machine. The scheme is based on the exponential smoothing of post-process measurements of relative machining errors due to the tool, workpiece and bed deflections. The guideway error identification system consists of a gap sensor, a, not necessarily accurate, straightedge, and the numerical control unit. Without a priori knowledge of the variations of the cutting parameters, the time-varying parameters are also estimated by an exponentially weighted recursive least squares method. Experimental results show that the guideway error is well identified within the range of RMS values of geometric error changes between machining passes disregarding the machining conditions.

Development of Shaft Straightening Machine with Springback Observer (스프링백 관측기를 이용한 축교정기 개발)

  • 안중용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.3
    • /
    • pp.22-30
    • /
    • 1996
  • In order to compensate for out-of-straightness of shafts, an automatic straightening process composed of an automatic measuring module, an automatic control unit and operating softwares was developed with a hydraulic press. The out-of-sraightness of each shaft was measured automatically in the measuring stage. An optimal pressure point was determined to minimize TIR value of the shaft according to press count of 3-points bending process. In the geometric adaptive control procedure, punch stroke and springback of the shaft were predicted by an observer using on-line measured values of press force and deflection amount I each press count. An automatic straightening machine was realized with the measuring module, the GAC module, PLD, IBM-PC and the operating software on the hydraulic press. the validity of the proposed straightening process was confirmed through a series of experiments with cam shafts.

  • PDF

Design of Geometric Adaptive Controller for the Shaft Straightening Machine (축교정기용 기하학적 적응제어기 설계)

  • 안중용;안동철;김승철;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.623-627
    • /
    • 1995
  • This paper deals with the process which automatically straightens the shaft whose straightness is over the tolerance. The developed straightening process is composed of the measuring module and the control module. In the measuring module, the deflection of each measuring point is automatically measured, and the press point and the reference press stroke is determined. In the control module, the springback is predicted by the observer using the calculated reference press stroke and on-line-measured force and deflection. Through a series of experiments, the validity of the proposed process was verified.

  • PDF

A Study on Vibration Control Performance of Macpherson Type Semi-Active Suspension System (맥퍼슨 타입 반 능동 현가장치의 진동제어 성능 고찰)

  • Dutta, Saikat;Han, Chulhee;Lee, TaeHoon;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.157-164
    • /
    • 2016
  • The paper studies a comparison analysis of semi-active control strategies for a Macpherson strut type suspension system consisting of MR(magneto-rheological) damper. As a first step, in order to formulate governing, a dynamic full model of a Macpherson strut is developed considering the kinematics. The nonlinear equation of motion of the strut is then linearized around the equilibrium point. A new adaptive moving sliding model controller is developed for fast response of the system. A newly proposed adaptive moving sliding mode control strategy is then compared with conventional sliding mode controller and skyhook controller. The comparison is made for two different types of road inputs; bump and random road profiles showing superior vibration control performance in time and frequency domains.

Adaptive Control of End Milling Machine to Improve Machining Straightness (직선도 개선을 위한 엔드밀링머시인 의 적응제어)

  • 김종선;정성종;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.590-597
    • /
    • 1985
  • A recursive geometric adaptive control method to compensate for machining straightness error in the finished surface due to tool deflection and guideway error generated by end milling process is developed. The relationship between the tool deflection and the feedrate is modeled by a modified Taylor's tool life equation. Without a priori knowledge on the variations off cutting parameters, time varying parameters are then estimated by an exponentially windowed recursive least squares method with only post-process measurements of the straightness error. The location error is controlled by shifting the milling bed in the direction perpendicular to the finished surface and adding a certain amount of feedrate with respect to the tool deflection model before cutting. The waviness error is compensated by adjusting the feedrate during machining. Experimental results show that location error is controlled within a range of fixturing error of the bed on the guideway and that about 60% reduction in the waviness error can be achieved within a few steps of parameter adaption under wide operating ranges of cutting conditions even if the parameters do not converge to fixed values.

A Study on the Effect Analysis Influenced on the Advanced System of Moving Object (이동물체가 정밀 시스템에 미치는 영항분석에 관한 연구)

  • Shin, Hyeon-Jae;Kim, Soo-In;Choi, In-Ho;Shon, Young-Woo;An, Young-Hwan;Kim, Dae-Wook;Lee, Jae-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.87-95
    • /
    • 2007
  • In this paper, we analyzed the mr detection and the stability of the object tracking system by an adaptive stereo object hacking using region-based MAD(Mean Absolute Difference) algorithm and the modified PID(Proportional Integral Derivative)-based pan/tilt controller. That is, in the proposed system, the location coordinates of the target object in the right and left images are extracted from the sequential stereo input image by applying a region-based MAD algorithm and the configuration parameter of the stereo camera, and then these values could effectively control to pan/tilt of the stereo camera under the noisy circumstances through the modified PID controller. Accordingly, an adaptive control effect of a moving object can be analyzed through the advanced system with the proposed 3D robot vision, in which the possibility of real-time implementation of the robot vision system is also confirmed.

Fault Detection and Diagnosis of the Deaerator System in Nuclear Power Plants (원전 탈기기 시스템의 수위 측정 센서의 고장 검출 및 진단)

  • Kim, Bong-Seok;Lee, In-Soo;Lee, Yoon-Joon;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.7 no.1 s.12
    • /
    • pp.107-118
    • /
    • 2003
  • In this paper, dynamic control model is formulated by considering the geometrical structure of the deaerator storage tank in nuclear power plant and input-output flow rate at steady state, and we describe fault detection and diagnosis (FDD) scheme based on the adaptive estimator. The performance and effectiveness of the proposed FDD scheme are evaluated by applying real operating data obtained from the YOUNGKWANG 3 & 4 FSAR.

  • PDF