• Title/Summary/Keyword: 기하최적화

Search Result 254, Processing Time 0.022 seconds

Survey of Technical Parameters for Pediatric Chest X-ray Imaging by Using Effective DQE and Dose (유효검출양자효율과 선량을 이용한 소아 흉부 X-선 영상의 기술적인 인자에 관한 조사)

  • Park, Hye-Suk;Kim, Ye-Seul;Kim, Sang-Tae;Park, Ok-Seob;Jeon, Chang-Woo;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.163-171
    • /
    • 2011
  • The purpose of this study was to investigate the effect of various technical parameters for the dose optimization in pediatric chest radiological examinations by evaluating effective dose and effective detective quantum efficiency (eDQE) including the scatter radiation from the object, the blur caused by the focal spot, geometric magnification and detector characteristics. For the tube voltages ranging from 40 to 90 kVp in 10 kVp increments at the FDD of 100, 110, 120, 150, 180 cm, the eDQE was evaluated at the same effective dose. The results showed that the eDQE was largest at 60 kVp when compares the eDQE at different tube voltage. Especially, the eDQE was considerably higher without the use of an anti-scatter grid on equivalent effective dose. This indicates that the reducing the scatter radiation did not compensate for the loss of absorbed effective photons in the grid. When the grid is not used the eDQE increased with increasing FDD because of the greater effective modulation transfer function (eMTF). However, most of major hospitals in Korea employed a short FDD of 100 cm with an anti-scatter grid for the chest radiological examination of a 15 month old infant. As a result, the entrance surface air kerma (ESAK) values for the hospitals of this survey exceeded the Korean DRL (diagnostic reference level) of $100{\mu}Gy$. Therefore, appropriate technical parameters should be established to perform pediatric chest examinations on children of different ages. The results of this study may serve as a baseline to establish detailed reference level of pediatric dose for different ages.

Evaluation of SharpIR Reconstruction Method in PET/CT (PET/CT 검사에서 SharpIR 재구성 방법의 평가)

  • Kim, Jung-Yul;Kang, Chun-Koo;Park, Hoon-Hee;Lim, Han-Sang;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.12-16
    • /
    • 2012
  • Purpose : In conventional PET image reconstruction, iterative reconstruction methods such as OSEM (Ordered Subsets Expectation Maximization) have now generally replaced traditional analytic methods such as filtered back-projection. This includes improvements in components of the system model geometry, fully 3D scatter and low noise randoms estimates. SharpIR algorithm is to improve PET image contrast to noise by incorporating information about the PET detector response into the 3D iterative reconstruction algorithm. The aim of this study is evaluation of SharpIR reconstruction method in PET/CT. Materials and Methods: For the measurement of detector response for the spatial resolution, a capillary tube was filled with FDG and scanned at varying distances from the iso-center (5, 10, 15, 20 cm). To measure image quality for contrast recovery, the NEMA IEC body phantom (Data Spectrum Corporation, Hillsborough, NC) with diameters of 1, 13, 17 and 22 for simulating hot and 28 and 37 mm for simulating cold lesions. A solution of 5.4 kBq/mL of $^{18}F$-FDG in water was used as a radioactive background obtaining a lesion of background ratio of 4.0. Images were reconstructed with VUE point HD and VUE point HD using SharpIR reconstruction algorithm. For the clinical evaluation, a whole body FDG scan acquired and to demonstrate contrast recovery, ROIs were drawn on a metabolic hot spot and also on a uniform region of the liver. Images were reconstructed with function of varying iteration number (1~10). Results: The result of increases axial distance from iso-center, full width at half maximum (FWHM) is also increasing in VUE point HD reconstruction image. Even showed an increasing distances constant FWHM. VUE point HD with SharpIR than VUE point HD showed improves contrast recovery in phantom and clinical study. Conclusion: By incorporating more information about the detector system response, the SharpIR algorithm improves the accuracy of underlying model used in VUE point HD. SharpIR algorithm improve spatial resolution for a line source in air, and improves contrast recovery at equivalent noise levels in phantoms and clinical studies. Therefore, SharpIR algorithm can be applied as through a longitudinal study will be useful in clinical.

  • PDF

Mitigation of Insufficient Capacity Problems of Central Bus Stops by Controlling Effective Green Time (유효녹색시간 조정을 활용한 중앙버스정류장 용량 부족 완화 방안 연구)

  • Koo, Kyo Min;Lee, Jae Duk;Ahn, Se Young;Chang, Iljoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.35-50
    • /
    • 2022
  • After the introduction of the central bus lane system, bus traffic was prioritized. This resulted in improved trust from bus users. However, the low capacity at the central bus stop reduces traffic speed and punctuality. In addition, physical constraints are inevitable because the construction of central bus lanes and bus stops considers the city's road geometry. Therefore, this study attempted to optimize the effective green time of the traffic signal system at the entrance and exit of the central bus stop to remedy its insufficient operational capacity. The Transit Capacity and Quality of Service Manual and Korea Highway Capacity Manual were used as the analysis methodologies. The number of stop areas for central bus stops to be built was determined by excluding variable physical factors, and field survey data collected from nine randomly selected central bus stops currently installed in Seoul were used. A scenario analysis was conducted on the central bus stops with insufficient capacity by adjusting the effective green time, and the capacity of the central bus stop was set as the dependent variable. According to the results, 26.7 percent of the central bus stops with insufficient capacity can solve the problem of insufficient capacity. Therefore, the results of this study can be verified by improving the operation level, and it can be effective even if the number of central bus stops calculated by engineering is not guaranteed during the planning stage of the central bus stop. As the number of central bus stops is expected to increase further as the number of central bus stops increases, it is necessary to improve the number of central bus stops. Therefore, it is hoped that the results presented in this study will be used as basic data for the improvement plan at the operational level before introducing the physical improvement plan.

Development of Adjustable Head holder Couch in H&N Cancer Radiation Therapy (두경부암 방사선 치료 시 Set-Up 조정 Head Holder 장치의 개발)

  • Shim, JaeGoo;Song, KiWon;Kim, JinMan;Park, MyoungHwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.43-50
    • /
    • 2014
  • In case of all patients who receive radiation therapy, a treatment plan is established and all steps of treatment are planned in the same geometrical condition. In case of head and neck cancer patients who undergo simulated treatment through computed tomography (CT), patients are fixed onto a table for planning, but laid on the top of the treatment table in the radiation therapy room. This study excogitated and fabricated an adjustable holder for head and neck cancer patients to fix patient's position and geometrical discrepancies when performing radiation therapy on head and neck cancer patients, and compared the error before and after adjusting the position of patients due to difference in weight to evaluate the correlation between patients' weight and range of error. Computed tomography system(High Advantage, GE, USA) is used for phantom to maintain the supine position to acquire the images of the therapy site for IMRT. IMRT 4MV X-rays was used by applying the LINAC(21EX, Varian, U.S.A). Treatment planning system (Pinnacle, ver. 9.1h, Philips, Madison, USA) was used. The setup accuracy was compared with each measurement was repeated five times for each weight (0, 15, and 30Kg) and CBCT was performed 30 times to find the mean and standard deviation of errors before and after the adjustment of each weight. SPSS ver.19.0(SPSS Inc., Chicago, IL,USA) statistics program was used to perform the Wilcoxon Rank test for significance evaluation and the Spearman analysis was used as the tool to analyze the significance evaluation of the correlation of weight. As a result of measuring the error values from CBCT before and after adjusting the position due to the weight difference, X,Y,Z axis was $0.4{\pm}0.8mm$, $0.8{\pm}0.4mm$, 0 for 0Kg before the adjustment. In 15Kg CBCT before and after adjusting the position due to the weight difference, X,Y,Z axis was $0.2{\pm}0.8mm$, $1.2{\pm}0.4mm$, $2.0{\pm}0.4mm$. After adjusting position was X,Y,Z axis was $0.2{\pm}0.4mm$, $0.4{\pm}0.5mm$, $0.4{\pm}0.5mm$. In 30Kg CBCT before and after adjusting the position due to the weight difference, X,Y,Z axis was $0.8{\pm}0.4mm$, $2.4{\pm}0.5mm$, $4.4{\pm}0.8mm$. After adjusting position was X,Y,Z axis was $0.6{\pm}0.5mm$, $1.0{\pm}0mm$, $0.6{\pm}0.5mm$. When the holder for the head and neck cancer was used to adjust the ab.0ove error value, the error values from CBCT were $0.2{\pm}0.8mm$ for the X axis, $0.40{\pm}0.54mm$ for Y axis, and 0 for Z axis. As a result of statistically analyzing each value before and after the adjustment the value was significant with p<0.034 at the Z axis with 15Kg of weight and with p<0.038 and p<0.041 at the Y and Z axes respectively with 30Kg of weight. There was a significant difference with p<0.008 when the analysis was performed through Kruscal-Wallis in terms of the difference in the adjusted values of the three weight groups. As it could reduce the errors, patients' reproduction could be improved for more precise and accurate radiation therapy. Development of an adjustable device for head and neck cancer patients is significant because it improves the reproduction of existing equipment by reducing the errors in patients' position.