• Title/Summary/Keyword: 기하지오이드

Search Result 17, Processing Time 0.032 seconds

A Comparison of the Gravimetric Geoid and the Geometric Geoid Using GPS/Leveling Data (GPS/Leveling 데이터를 이용한 기하지오이드와 중력지오이드의 비교 분석)

  • Kim, Young-Gil;Choi, Yun-Soo;Kwon, Jay-Hyoun;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.217-222
    • /
    • 2010
  • The geoid is the level surface that closely approximates mean sea level and usually used for the origin of vertical datum. For the computation of geoid, various sources of gravity measurements are used in South Korea and, as a consequence, the geoid models may show different results. however, a limited analysis has been performed due to a lack of controlled data, namely the GPS/Leveling data. Therefore, in this study, the gravimetric geoids are compared with the geodetic geoid which is obtained through the GPS/Leveling procedures. The gravimetric geoids are categorized into geoid from airborne gravimetry, geoid from the terrestrial gravimetry, NGII geoid(geoids published by National Geographic Information Institute) and NORI geoid(geoi published by National Oceanographic Research Institute), respectively. For the analysis, the geometric geoid is obtained at each unified national control point and the difference between geodetic and gravimetric geoid is computed. Also, the geoid height data is gridded on a regular $10{\times}10-km$ grid so that the FFT method can be applied to analyze the geoid height differences in frequency domain. The results show that no significant differences in standard deviation are observed when the geoids from the airborne and terrestrial gravimetry are compared with the geomertric geoid while relatively large difference are shown when NGII geoid and NORI geoid are compared with geometric geoid. Also, NGII geoid and NORI geoid are analyzed in frequency domain and the deviations occurs in long-wavelength domain.

A Comparison of the Gravimetric Geoid and the Geometric Geoid Using GPS/Leveling Dataa (GPS/Leveling 데이터를 이용한 기하지오이드와 중력지오이드의 비교 분석)

  • Kim, Young-Gil;Choi, Yun-Soo;Yoon, Ha-Soo;Jung, Seung-Kyoon;Lee, Sang-Jin
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.06a
    • /
    • pp.279-280
    • /
    • 2010
  • 지오이드는 수직 높이 체계의 기준으로 다양한 방법으로 측정 된 중력값을 이용하여 계산된다. 따라서 지오이드의 계산에 사용된 관측자료에 따라 지오이드 사이에 차이가 발생할 수 있으나 이에 대한 연구가 상대적으로 미흡한 실정이다. 그 이유는 GPS/Leveling 자료와 같은 검증자료가 충분치 않아 제한된 범위 내에서만 분석이 수행되어 왔기 때문이다. 본 연구에서는 GPS/Leveling 자료를 이용하여 계산된 기하지오이드를 기준으로 중력기반 지오이드를 비교 분석하였다.

  • PDF

Development of Hybrid Geoid using the Various Gravimetric Reduction Methods in Korea (다양한 중력학적 환산방법을 적용한 한국의 합성지오이드 개발)

  • Lee, Dong-Ha;Lee, Suk-Bae;Kwon, Jae Hyoun;Yun, Hong-Sic
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5D
    • /
    • pp.741-747
    • /
    • 2008
  • Nowadays, the accuracy of the geoid model has been improved through development of the combination model which was composed of traditional gravimetric geoid and geometric geoid by the GPS/leveling data in USA and Japan. It is a state of the art method in geoid modeling field that what so called hybrid geoid. In this paper, as a basic study to develop Korean hybrid geoid model, we studied gravimetric geoid solutions using three gravity reduction methods (Helmert's condensation method, RTM method and Airy-isostatic method) and evaluated the usefulness of each method in context of precise geoid. The gravimetric geoid model were determined by restoring the gravity anomalies (included TC) and the indirect effects were made from various reduction methods on the EIGEN-CG03C reference field. The results are compared with respect to the geometric geoid undulation determined from 498 GPS/leveling after LSC fitting. The results showed that hybrid geoid with RTM (Residual terrain model) reduction method was most accurate method and the value of the difference compared to geometric geoid was $0.001{\pm}0.053m$.

Calculation of Geometric Geoidal Height by GPS Surveying on 1st and 2nd order Benchmark Line (1, 2등 수준노선에서 GPS 측량에 의한 기하학적 지오이드고의 계산)

  • Lee, Suk-Bae;Kim, Jin-Soo;Kim, Cheol-Young;Kwon, Jay-Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.213-223
    • /
    • 2009
  • In geoid modelling field, it is very important the GPS/leveling data because it could be check-out the accuracy of gravimetric geoid and computed the hybrid geoid. In this study, GPS surveying was accomplished in the test area including mountainous area to improve the GPS/leveling data density in Korea. And the geometric geoidal heights was calculated using the GPS/leveling data in the test area and the accuracy of the geoidal heights was analyzed. For this study, GPS surveying was accomplished on the 211 1st and 2nd order benchmarks in Gyeongbuk province and 198 GPS/leveling data were achieved after both baseline analysis and network adjustment. Geometric geoidal heights were calculated using these 198 GPS/leveling data and the accuracy analysis was done by comparison with the geoidal heights from EGM2008 geopotential model. The results showed that the bias and standard deviation computed from 190 GPS/leveling data after gross removal was -0.185$\pm$0.079m. And also, the accuracy analyses according to the benchmark order, baseline length, and altitude were accomplished.

Calaulation of Geometric Geoidal Heights Using Gps/leveling Data in Study Area (Gps/leveling 데이터에 의한 기하학적 지오이드고의 산출)

  • 이석배;황용진;이재원
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.1
    • /
    • pp.45-52
    • /
    • 2004
  • It can be classified in various methods to get the geoidal heights. It can be achieved geometric geoidal heights if we do GPS surveying in leveling point. The aims of this paper are calculation of geometric geoidal heights using GPS/leveling data in study area and evaluation of the global and local geoid models in and around Korean peninsula. For this study, study area was selected in the leveling line from Kunsan to Chonju city and GPS surveying was accomplished in the leveling line. And, also spherical harmonic analysis was made on the three global geopotential models, OSU91A, EGM96, EGM96m under same condition. Then the differences were calculated between geometric geoidal heights and geoidal heights of 3 geopotential models, KOGD2002 which was Korean gravimetric geoid model. The results shows that EGM96m is the best model because the differences between geoidal heights of E6M96m and geometric geoidal heights of GPS/Leveling data appear the smallest value among them.

Geometric Geoid Determination in South Korea using GPS/Levelling Data

  • Yun, Hong-Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.285-289
    • /
    • 1995
  • This paper describes the determination of geoid using height data measured by GPS and Spirit Levelling. The GPS data of the 88 stations were used to determine the geoid undulation (N) which can be easily obtained by subtracting the orthometric height(H) from the ellipsoidal height(h). From the geoid undulation (N) calculated at each station mentioned above, geoid plots with a contour interval of 0.25 m were drawn using two interpolation methods. The following interpolation methods were applied and compared with each other: Minimum Curvature Method and Least Squares Fitted Plane. Comparison between geometric geoid and gravimetric geoid undulation by FFT technique was carried out.

  • PDF

Development of the Geoid Model in Korean Peninsula referred to Bessel Ellipsoid (베셀타원체상에서의 한반도 지오이드 모델의 개발)

  • 이석배
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.2
    • /
    • pp.213-223
    • /
    • 1998
  • This paper deals with the geoid modelling in and around Korean peninsula referred to Bessel ellipsoid. Several useful data were used to compute precise geoidal heights referred to GRS80 by remove and restore technique and FFT technique was used to evaluate Stokes' integral. All grid point elevations extracted from GTOPO 30 and Bessel coordinates of all grid point were computed through coordinates transformation by applying three transformation parameters. Finally, geoidal heights referred to Bessel ellipsoid were calculated by geometric method. As the results of this study, a precise gravimetric geoid model referred to GRS80 (KOGGDM33) and geoid model referred to Bessel ellipsoid(KOBGDM33) in and around Korean peninsula were developed. KOBGDM33 shows the gradual distribution of geoidal heights from -91.8 m in Yongampo to -39.0 m in the straits of Korea.

  • PDF

A Study on Geoid Model Development Method in Philipphines (필리핀 지오이드모델의 개발방안 연구)

  • Lee, Suk-Bae;Pena, Bonifasio Dela
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.699-710
    • /
    • 2009
  • If a country has her geoid model, it could be determine accurate orthometric height because the geoid model could provide continuous equi-gravity potential surface. And it is possible to improve the coordinates accuracy of national control points through geodetic network adjustment considering geoidal heights. This study aims to find the best way to develop geoid model in Philippines which have similar topographic conditions as like Malaysia and Indonesia in Eastsouth asia. So, in this study, it is surveyed the general theories of geoid determination and development cases of geoid model in Asia and it is computed that the geoidal heights and gravity anomalies by spherical harmonic analysis using EGM2008, the latest earth geopotential model. The results show that first, the development of gravimetric geoid model based on airborne gravimetry is needed and second, about 200 GPS surveying data at national benchmark is needed. It is concluded that it is the most reasonable way to develop the hybrid geoid model through fitting geometric geoid by GPS/leveling data to gravimetric geoid. Also, it is proposed that four band spherical Fast fourier transformation(FFT) method for evaluation of Stokes integration and remove and restore technique using EGM2008 and SRTM for calculation of gravimetric geoid model and least square collocation algorithm for calculation of hybrid geoid model.

Calculation of Geoidal Height refered to Bessel Ellipsoid From EGM96 Model (EGM96 모델을 이용한 Bessel 지오이드고의 계산)

  • 최경재;최윤수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 1999
  • In order to calculate geoidal height refered to Bessel ellipsoid, methods to translate geoidal heights from a certain coordinate system to an arbitrary system with the corresponding ellipsoid are studied. and geoidal heights refered to Bessel ellipsoid were computed from EGM96 Model refered to GRS80 using iteration method pro-posed in this paper. Transformation parameters between WGS84 and Bessel were calculated using geoidal heights computed from iteration method. The result of coordinate transformation(standard deviation) were 0.009 second in latitude and 0.006 in longitude and 0.393m in orthometric height.

  • PDF

A Study on the Geoid Modeling by Gravimetric Methods and Methods of Satellite Geodesy (중력학적 방법 및 위성측지 방법에 의한 지오이드 모델링에 관한 연구)

  • 이석배
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.4
    • /
    • pp.359-367
    • /
    • 2000
  • This paper suggests that coefficients models of the Earth's gravitational potential can be used to calculate height anomalies which are then reduced to the geoid undulation to determine more precise geoid undulation. The potential coefficients and modified coefficients of EGM96 and KODEM33 digital elevation model in and around the Korean peninsula were used for this study. The magnitude of height anomaly computed in this study reached 0.025 m and the mean vaule showed -0.015 m. In this study, geometrical geoid undulation was derived from GPS/Leveling data for evaluating the precisely computed geoid undulation. In comparison with geometric and gravimetric geoid undulations, mean value and standard deviation of the differences showed 0.0114 m and 0.2817 m respectively and it showed the improvement of results.

  • PDF