• Title/Summary/Keyword: 기체 분리막

Search Result 374, Processing Time 0.023 seconds

Design and Application of Membrane Separation Processes (막분리 공정설계 및 응용)

  • 이규현
    • Membrane Journal
    • /
    • v.3 no.2
    • /
    • pp.41-50
    • /
    • 1993
  • 최근 산업의 고도화 및 다변화호 인한 고순도, 고품위의 제품이 요구됨에 따라 분리공정은 대단히 중요한 공정으로 인정되고 있어 화학공업, 식품공업, 약품공업 등의 공업분야뿐만 아니라 의료, 생화학 및 환경분야에 이르기까지 중요한 연구과제가 되고 있다. 분리공정은 열역학적 상평형 원리에 기인한 분리방법과 물질이동 즉, 이동속도 원리에 기인한 분리방법과 물질이도 즉, 이동속도 원리에 기인한 분리방법으로 구별할 수 있는데 이는 혼합물의 동적 성질, 특히 확산성이나 침투속도가 서로 다른 것을 이용한 것이다. 막을 이용한 분리공정은 막의형태, 조작원리 및 적용분야에 다라 정밀여과, 한외여과, 역삼투, 기체분리 및 투과증발 등으로 분류되며 이는 고분자막에 존재하는 Pore의 크기, 막의 균일성, 대칭성 및 막의 하전형태에 따라 구분한다.

  • PDF

Highly-permeable SBS/UiO-66 Mixed Matrix Membranes for CO2/N2 Separation (CO2/N2 분리를 위한 SBS/UiO-66 기반의 고투과성 혼합 매질 분리막)

  • Kim, Young Jun;Moon, Seung Jae;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.319-325
    • /
    • 2020
  • In this study, we developed mixed matrix membranes by blending thermoplastic elastomer, i.e. polystyreneblock-polybutadiene-block-polystyrene (SBS) block copolymer with the synthesized UiO-66 particles for CO2/N2 gas separation. To investigate the effect of UiO-66 particles in the SBS matrix, we prepared different mixed matrix membranes (MMMs) by varying the mass ratio of SBS and UiO-66 in the blend. To fabricate well-dispersed UiO-66, the SBS/UiO-66 mixture was sonicated and stirred thoroughly. The physico-chemical properties of prepared membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The gas separation performance was measured by time-lag method. The permeability of the MMMs increased significantly as the content of UiO-66 increased, but the CO2/N2 selectivity did not decrease significantly. The membranes containing 20% of UiO-66 particles showed the best performance with the CO2 permeability and CO2/N2 selectivity of 663.8 barrer and 13.3, respectively. This result showed performance closer to upper bound than pure SBS membrane in the Robeson plot, as the added UiO-66 particles did not significantly sacrifice selectivity and more than doubled gas permeability.

Separation Permeation Characteristics of N2-O2 Gas in Air at Cell Membrane Model of Skin which Irradiated by High Energy Electron (고에너지 전자선을 조사한 피부의 세포막모델에서 공기 중의 O2-N2 혼합기체의 분리투과 특성)

  • Ko, In-Ho;Yeo, Jin-Dong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.261-270
    • /
    • 2019
  • The separation permeation characteristics of $N_2-O_2$ gas in air at cell membrane model of skin which irradiated by high energy electron(linac 6 MeV) were investigated. The cell membrane model of skin used in this experiment was a sulfonated polydimethyl siloxane(PDMS) non-porous membrane. The pressure range of $N_2$ and $O_2$ gas were appeared from $1kg_f/cm^2$ to $6kg_f/cm^2$. In this experiment(temperature $36.5^{\circ}C$), the permeation change of $N_2$ and $O_2$ gas in non-porous membrane by non-irradiation were found to be $1.19{\times}10^{-4}-2.43{\times}10^{-4}$, $1.72{\times}10^{-4}-2.6{\times}10^{-4}cm^3(STP)/cm^2{\cdot}sec{\cdot}cmHg$, respectively. That of $N_2$ and $O_2$ gas in non-porous membrane by irradiation were found to be $0.19{\times}10^{-4}-0.56{\times}10^{-4}$, $0.41{\times}10^{-4}-0.76{\times}10^{-4}cm^3(STP)/cm^2{\cdot}sec{\cdot}cmHg$, respectively. The irradiated membrane was significantly decreased about 4-10 times than membrane which was not irradiated. And ideal separation factor of $N_2$ and $O_2$ gas by non-irradiation was found to be from 1.32 to 0.42 and that of $N_2$ and $O_2$ gas by irradiation was found to be from 0.237 to 0.125. The irradiated membrane was significantly decreased about 4-5 times than membrane which was not irradiated. When the operation change(cut) and pressure ratio(Pr) by non-irradiation were about 0, One was increased to the oxygen enrichment and the other was decreased to the oxygen enrichment. The irradiated membrane was significantly decreased about 4-19 times than membrane which was not irradiated. As the pressure of $N_2$ and $O_2$ gas was increased, the selectivity was decreased. As separation permeation characteristics of $N_2-O_2$ gas in cell membrane model of skin were abnormal, cell damages were appeared at cell.

Fabrication of Polymethylpentene (PMP) Membranes Using Nonsolvent-Thermally-Induced Phase Separation (N-TIPS) Method (비용매-열유도상분리법(N-TIPS)을 활용한 polymethylpentene (PMP) 분리막 제조기술)

  • Guntak Song;Seung Hwan Kim;Bao Tran Duy Nguyen;Jeong F. Kim
    • Membrane Journal
    • /
    • v.34 no.4
    • /
    • pp.216-223
    • /
    • 2024
  • In comparison to commonly employed polypropylene (PP) material, polymethylpentene (PMP) exhibits low surface energy and reduced crystallinity, allowing fabrication of asymmetric membranes with a dense skin layer. However, its higher melting point poses significant challenges with respect to polymer processability. In this work, we utilized the N-TIPS method, which combines the advantages of non-solvent induced phase separation (NIPS) and thermally induced phase separation (TIPS), to fabricate PMP membranes. Cyclohexane was employed as the solvent for preparing the PMP dope solution, while water, ethanol (EtOH), and isopropanol (IPA) were used as nonsolvents. When cyclohexane-immiscible water was used as the nonsolvent, the resulting membrane exhibited TIPS morphology with unifrom pore structure but lacked suface uniformity. In contrast, when cyclohexane-miscible alcohols (EtOH, IPA) were employed, the membranes displayed NIPS morphology with a dense skin layer with higher mechanical strength. Furthermore, the effect of polyethylene glycol (PEG) as a pore forming agent was investigated to better control the surface pore size.

Synthesis, Morphology and Permeation Properties of poly(dimethyl siloxane)-poly(1-vinyl-2-pyrrolidinone) Comb Copolymer (폴리디메틸실록산-폴리비닐피롤리돈 빗살 공중합체 합성, 모폴로지 및 투과성질)

  • Patel, Rajkumar;Park, Jung Tae;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.499-505
    • /
    • 2017
  • The increasing number of natural disasters resulting from anthropogenic greenhouse gas emissions has prompted the development of a gas separation membrane. Carbon dioxide ($CO_2$) is the main cause of global warming. Organic polymeric membranes with inherent flexibility are good candidates for use in gas separation membranes and poly(dimethyl siloxane)(PDMS) specifically is a promising material due to its inherently high $CO_2$ diffusivity. In addition, poly(vinyl pyrrolidine)(PVP) is a polymer with high $CO_2$ solubility that could be incorporated into a gas separation membrane. In this study, poly(dimethyl siloxane)-poly(vinyl pyrrolidine)(PDMS-PVP) comb copolymers with different compositions were synthesized under mild conditions via a simple one step free radical polymerization. The copolymerization of PDMS and PVP was characterized by FTIR. The morphology and thermal behavior of the produced polymers were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Composite membranes composed of PDMS-PVP on a microporous polysulfone substrate layer were prepared and their $CO_2$ separation properties were subsequently studied. The $CO_2$ permeance and $CO_2/N_2$ selectivity through the PDMS-PVP composite membrane reached 140.6 GPU and 12.0, respectively.

Facilitated Transport: Basic Concepts and Applications to Gas Separation Membranes (촉진수송: 기본 개념 및 기체분리막 응용)

  • Park, Cheol Hun;Lee, Jae Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.205-215
    • /
    • 2017
  • Polymer membranes are cheap and easy in fabrication, and show a high permeability and selectivity, thus play pivotal roles in gas separation as well as water purification. However, polymer membranes typically exhibit the trade-off relation between permeability and selectivity; i.e. when the permeability is high, the selectivity is low and vice versa. Facilitated transport has been considered one of the solutions to address this issue. Over the last decades, facilitated transport concept had played an important role in preparing the membranes and providing ideal and various models for the transport. Understanding the nature of carrier, the mobility of matrix and the physico-chemical properties of polymer composites are crucial for facilitated transport. Depending on the mobility of carrier, facilitated transport membrane is classified into three; mobile carrier membrane, semi-mobile carrier membrane, fixed-site carrier membrane. Also, there are four types of reversible reaction between the carrier and the specific target; proton transfer reaction, nucleophilic addition reaction, p-complexation reaction and electrochemical reaction. The facilitated transport membranes have been applied in the separation of CO2, O2 and olefin (propylene or ethylene). In this review, major challenges surrounding facilitated transport membranes and the strategies to tackle these challenges are given in detail.

Effectss of Zeolite contained in Polyimide Membrane for Gas Permeation Properties (폴리이미드/NaX막의 기체투과 특성에 미치는 NaX의 영향)

  • 최익창;김건중;남세종
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.51-52
    • /
    • 1997
  • 1. 서론 : 폴리이미드는 우수한 기계적 강도와 열적, 화학적 안정성으로 인해 최근 막분리 재료로 많이 연구 검토되고 있다. 대부분의 폴리이미드는 비교적 높은 선택도를 가지고 있으나 투과계수가 떨어지는 단점을 지니고 있어소 이를 극복하기 위한 많은 연구가 진행되어 왔다. 그 결과 투과계수를 크게 증가시킨 폴리이미드를 함성하였으나 선택도는 감소하여 투과특성의 상위한계를 넘지는 못하였다. 이 한계를 극복하기 의해서 복합잴를 이용하거나 UV, 플라즈마 처리에 의한 고분자막의 수식 등 많은 방법들이 연구되고 있다. 본 연구는 NaX형 제올라이트를 폴리이미드에 혼화시킨 막으로 산소/질소의 분리투과특성의 개선을 시도하였으며, NaX형 제올라이트와 폴리이미드 혼화방법, 혼화비율 등이 기체투과특성에 미치는 영향을 고찰하였다. 본 실험에 사용된 NaX형 제올라이트는 직접 합성하여 사용하였다. 폴리이미드는 2,3,5,6-Tetramethyl-1,4-phenylenediamine(p-TeMPD)과 (3,3,4,4'-dicarboxyphenyl)-hexafluoropropene-dianhydride(6FDA)로 합성한 6FDA-p-TeMPD 폴리이미드를 사용하였고, 그 투과계수는 122Barrer, 선택도$\alpha$$_{N_2/O_2}$ = 3.4이다.

  • PDF

Properties and Gas Permeability of PEBAX Composite Membrane Containing GO (GO를 함유한 PEBAX 복합막의 성질과 기체투과도)

  • Lee, Seul Ki;Hong, Se Ryeong;Lee, Hyun Kyung
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.233-242
    • /
    • 2018
  • To study gas membrane using GO (graphene oxide), the PEBAX [poly(ether-block-amide)]-GO polymer composite membrane was prepared by adding GO to PEBAX. Through this composite membrane, gas permeation characteristics for $H_2$, $N_2$, $CH_4$, and $CO_2$ were studied. As a result of the gas permeation test, the permeability of $N_2$, $CH_4$, and $CO_2$ to PEBAX-GO composite membranes gradually decreased as the GO content increased. On the other hand, the gas permeability of $H_2$ increased with the increase of GO content, and it was 21.43 barrer at the GO content of 30 wt%, which was about 5 times higher than that of PEBAX membrane. This is because the GO was easier to operate with a fast and selective gas transport channel for $H_2$ than other gases. The increased selectivity ($H_2/N_2$) and selectivity ($H_2/CH_4$) were influenced by the diffusion selectivity by the permeate gas size. The increased selectivity ($CO_2/N_2$) and selectivity ($CO_2/CH_4$) were more influenced by the solubility selectivity due to the affinity of $CO_2$ and GO for -COOH.