• Title/Summary/Keyword: 기체투과성

Search Result 42, Processing Time 0.02 seconds

Photoluminescence Property of Polymer Coated Porous Silicon (폴리머로 코딩된 다공질 실리콘의 광 루미네센스 특성)

  • Ahn, Jong-Pil;Kang, Moon-Sik;Min, Nam-Ki;Kim, Su-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1463-1465
    • /
    • 2001
  • 다공질 실리콘을 대기에 노출시켰을 때 시간이 경과하면, 초기의 발광 특성이 변화하는 aging effect가 있다. 다공질 실리콘을 광 센서로 사용하기 위해서는 대기 중에 노출한 후 시간이 경과해도, 동일한 파장을 유지하여야 한다. 본 논문에서는 기체의 투과성이 낮고, 빛을 잘 투과시키는 폴리머들을 이용하여 다공질 실리콘 표면에 보호막으로 코팅하였다.

  • PDF

막분리법을 이용한 산소부화공기의 제조와 연소장치에의 응용

  • 박준택
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.38-41
    • /
    • 1994
  • 막분리(membrane separation)법은 막 전후의 압력차, 농도차 등을 추진력(driving foroe)으로 하여 분리대상물질에 대한 막의 선택투과성 차이를 이용, 분리를 행하는 것이다. 이 분리법은 기존의 분리공정인 심냉법(cryogenic separation)과는 달리 상변환 공정이 필요없어 에너지가 적게 들고 또한 PSA(pressure swing adsorption)법에서와 같은 cycle 운전이 필요없어 연속적으로 분리가 가능하며 시스템도 간단하다. 최근 기체 막분리의 경우 수소 및 탄산가스의 회수정제, 공기중의 산소와 질소의 분리 등에 실용화되고 있다. 여기서는 공기중의 산소를 분리하여 30-40% 산소부화공기(oxygen enriched air)를 간편하게 제조할 수 있는 산소부화막장치와 연소장치에의 응용기술 및 연구결과에 대해 간략히 소개하고자 한다.

  • PDF

Permeation and diffusion of gases through polytetrafluoroethylene membrane (Polytetrafluoroethylene막을 통한 기체의 투과 및 확산)

  • 김형민;김남인;이우태
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.34-35
    • /
    • 1994
  • 기체혼합물의 분리및 정제기술은 에너지 절약의 관점과 새로운 기능성 고분자의 개발로 고분자막에 의한 분리법이 관심을 끌게되었다. 공기로부터 산소부화, 방사성 크세논 및 크립론의 제거, 제련소 폐가스증의 수소분리, 천연가스로부터 헬륨의 회수분야등은 실제로 산업적으로 실용화되고 있다. 그러나 고분자막은 일반적으로 투과성과 선택성이 서로 상반되는 경향을 나타내므로, 투과성과 분리성이 좋은 기능성 고분자막의 개발에 다양한 연구가 필요로 하고있다. 본 연구에서 사용한 PTFE(polytetrafluoroethylene)는 결정성 고분자로서 넓은 온도범위에서 낮은 마찰계수, 우수한 전기적 절연특성, 강한 Carbon-fluorine 겹합에 기인한 높은 열적 안정성, 화확적 불활성때문에 공업용 고분자 재료로서 독특한 위치를 차지하고 있다. 최근에 미국과 일본을 주축으로 상용화딘 공기전지(Zinc-air battery)는 PTFE막의 뛰어난 소수성과 화학적 저항성으로 수은 전지의 대체품으로 주목받고 있는데, 장기 방전시 성능 저하가 따르므로 막을 통한 산소투과성을 방전에 필요한 최소값으로 감소시키는 것이 중요한 과제가 되고있다.

  • PDF

Synthesis and Application for Ophthalmic Material of Polydimethylsiloxanewith Methacrylate Endgroup (Methacrylate 말단기를 가진 Polydimethylsiloxane의 합성 및 안의료용 소재로의 응용)

  • Ye, Ki-Hun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.335-339
    • /
    • 2009
  • Polydimethylsiloxane (PDMS) with methacrylate endgroup is used as contact lens material with elasticity and high oxygen permeability. PDMS prepolymer with methacrylate endgroup was prepared by reacting PDMS (polydimethylsiloxane) with HEMA (2-hydroxyethyl methacrylate). The HEMA-substituted PDMS prepolymer was then copolymerized using AIBN (azobisisobutyronitrile) with BMA (butyl methacrylate; to increase elasticity and flexibility). The water content, oxygen permeability, and visible-ray transmissibility of the resulting polymer were measured to be 23%, 83% and Dk/t > 50, indicating that the copolymer can be used as a good contact lens material.

Changes in Mineral and Pectic Substances of Korean Mature-Green Mume (Prunus mume Sieb. et Zucc) Fruits Packaged in Plastic Films with Gas Absorbents during Storage (가스 제거제 첨가에 따른 필름 포장 청매실의 저장 중 무기질 및 펙틴 성분 변화)

  • Cha, Hwan-Soo;Hong, Seok-In;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.149-154
    • /
    • 2003
  • Changes in mineral (Ca, Mg) contents and pectic substances of mature-green 'Nanko' Mume fruits hermetically packaged in 0.03 mm low density polyethylene (LDPE) films with and without gas absorbents were examined during storage at $25^{\circ}C$ for 10 days. Each packaging contained 10 g $Ca(OH)_2$ as a carbon dioxide scavenger, 30 g $KMnO_4$ as an ethylene scrubber or their mixture. In the presence of the ethylene scrubber, losses in mineral contents of alcohol insoluble solids and water soluble pectin were remarkably suppressed, whereas no significant difference was observed in the Ca content between the fresh fruit and those stored for 10 days. Fruits packaged with the ethylene absorbent retained higher amount of pectic substances than those with other packaging treatments. Degradation of the pectic substances into small molecules was also noticeably reduced when the ethylene scrubber was used. Overall results showed that the combination of the gas permeable film and the ethylene absorbent could be applied to mature-green Mume fruits as an effective packaging method to retard the texture softening during storage at the ambient temperature.

Predictive Thermodynamic Model for Gas Permeability of Gas Separation Membrane (기체 분리막의 투과 특성 예측 모델식 개발)

  • Kim, Jong Hwan;Hong, Sung Kyu;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.619-626
    • /
    • 2007
  • It is of special interest in our membrane separation technology due to its low energy consumption and cost, relatively simple equipment, low investment and operation cost, et al. Full scale utilization of such processes can be widely utilized to the various fields. Using the difference of permeability of gas molecules between the filter layers, it is able to separate effectually pure gases from the mixed gases. In this paper, the membranes of PDMS, ${\gamma}-radiated$ PDMS, PTFE, PTFE-X are chosen to develop the predictive model for the separation of pure gases such as oxygen, nitrogen, hydrogen, and other gases from mixed gases. By utilizing the thermodynamic gas properties($\sigma$, $\varepsilon/k$) and experimental data of gas transport characteristics for different polymer membranes, it is able to develop the predictive model equation under the influence of temperature, pressure and polymer characteristics. Predictive model developed in this research showed good agreement with experimental data of gas permeability characteristics for develop four different polymer membranes. The proposed model can also be extended to the general equation for predicting the separation of gases based on the properties of polymeric membranes.

Gas Separation Properties and Their Applications of High Permeable Amorphous Perfluoropolymer Membranes (고투과성 무정형 불소고분자 불리막의 기체분리 특성 및 응용)

  • Freeman, Benny D.;Park, Ho-Bum
    • Membrane Journal
    • /
    • v.17 no.2
    • /
    • pp.81-92
    • /
    • 2007
  • Membrane-based separation processes are receiving increasing attention in the scientific community and industry since they provide a desirable alternative to processes that are not easy to achieve by conventional separation technologies. In particular, gas separation using polymeric membranes have annually grown so fast owing to advantages such as easy installation, no moving parts, small footprint and low energy process. The key element is definitely a polymer membrane exhibiting high permeability and high selectivity to compete with other gas separation technologies. Current polymer membranes used for commercial gas separation are a family of hydrocarbon polymers for hydrogen separation, air separation and carbon dioxide separation from natural gas sweetening. Relatively, gas or vapor separation properties of fluoropolymers are not known so much as compared with those of hydrocarbon polymers. Accordingly, in this study, membranes prepared from amorphous perfluoropolymers are of particular interest because of the unique properties of these polymers. The advantages offered by these amorphous perfluoropolymers for use in gas and vapor separation will be discussed. In addition, membrane properties and separation performance will be compared with other membranes available on the market.

Radial Variation of Sound Absorption Capability in the Cross Sectional Surface of Yellow Poplar Wood (백합나무 횡단면 흡음성능의 방사방향 변이)

  • Kang, Chun-Won;Lee, Youn-Hun;Kang, Ho-Yang;Kang, Wook;Xu, Huiran;Chung, Woo-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.326-332
    • /
    • 2011
  • Radial variation of sound absorption capability and air permeability of yellow poplar (Liriodendron tulipifera) wood in cross sectional surface and effect of steam explosion treatment were estimated by the two microphone transfer function method and the capillary flow porometry, respectively. The sound absorption coefficients of steam explosion treated wood was higher than those of control wood and these values increased with frequency. Abundant and big vessel may behave as sound absorbing pore observed on the cross sectional surface of yellow poplar wood. The sound absorption coefficients and air permeability of sapwood were higher than those of heartwood for Liriodendron tulipifera.

Effect of Modified Atmosphere Packaging on Preservation of Pumpkin Rice Cake (호박 설기떡의 저장성에 미치는 변형기체포장의 영향)

  • Moon, Ki-Bok;Kim, Hwan-Ki;An, Duck-Soon;Lee, Dong-Sun
    • Food Science and Preservation
    • /
    • v.17 no.6
    • /
    • pp.908-913
    • /
    • 2010
  • Modified atmosphere packaging (MAP) was evaluated for the storage of pumpkin rice cake as a means of preserving quality and extending shelf-life. Retail-sized amounts of rice cake were packaged in trays under different modified atmosphere conditions (air, vacuum, 60% $CO_2$/40% $N_2$ and 100% $CO_2$) using gas-barrier plastic film; control was in air-permeable stretch wrap. The packages were stored at $20^{\circ}C$ with periodical measurement of package atmosphere and cake quality attributes. The modified atmosphere packages of 60% $CO_2$/40% $N_2$ and 100% $CO_2$ inhibited the growth of molds/yeasts completely and significantly retarded the growth of aerobic bacteria. All the packages except that of 100% $CO_2$ showed the reduction of internal $O_2$ concentration and increase of the $CO_2$ with storage time due to the microbial activity. There has been slight decrease of $CO_2$ concentration for 60% $CO_2$/40% $N_2$ and 100% $CO_2$ packages just after start of the storage possibly due to dissolution of headspace $CO_2$ into the cake. Any MAP conditions did not affect the retrogradation of the rice cake. Surface color of the cake within affordable microbial quality limit was not affected significantly by packaging conditions.

Storage Quality of Minimally Processed Onions as Affected by Seal-Packaging Methods (포장방법에 따른 신선 편의가공 양파의 저장품질 변화)

  • Hong, Seok-In;Son, Seok-Min;Chung, Myong-Soo;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1110-1116
    • /
    • 2003
  • The effects of packaging methods on the storage quality of minimally processed (prepeeled) onions were investigated to determine the optimal packing design. Various packaging treatments used for modifying headspace atmospheres included two passive MAP using LDPE and PP films, two active MAP using a gas mixture of 20% $O_2/10%\;CO_2/balance\;N_2$ and an ethylene scavenging sachet, and moderate vacuum packaging (MVP). The quality attributes of onion samples were evaluated periodically in terms of flesh weight loss, color of cut surface, decay ratio, microbial counts, and sensory properties during storage at $10^{\circ}C$ for 28 days. Packaging methods did not significantly influence surface color, weight loss, and microbiological populations of mesophiles, psychrotrophs, and lactic acid bacteria. They did, however, affect sensory characteristics as well as decay occurrence. Results indicated that seal-packaging with a gas-permeable plastic film under a mild vacuum condition could retain better onion quality in terms of microbial decay and visual sensory aspects as compared with the other packages.