• Title/Summary/Keyword: 기질수축

Search Result 39, Processing Time 0.03 seconds

Polymerization Shrinkage and Stress of Silorane-based Dental Restorative Composite (Silorane-기질 치아 수복용 복합레진의 중합수축과 중합수축응력)

  • Lee, In-Bog;Park, Sung-Hwan;Kweon, Hyun-Jeong;Gu, Ja-Uk;Choi, Nak-Sam
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.182-188
    • /
    • 2013
  • The purpose of this study was to measure the volumetric polymerization shrinkage kinetics and stress of a silorane-based dental restorative composite and compare it with those of conventional methacrylate-based dental composites. Two methacrylate-based composites (Z250, Z350 flowable) and one silorane-based composite (P90) were investigated. The volumetric polymerization shrinkage of the composites during light curing was measured using a laboratory-made volume shrinkage measurement instrument based on the Archimedes' principle, and the polymerization stress was also determined with the strain gage method. The shrinkage of silorane-based composites (P90) was the lowest, and that of Z350 flowable was the highest. Peak polymerization shrinkage rate was the lowest in P90 and the highest in Z350 flowable. The time to reach peak shrinkage rate of P90 was longer than those of the methacrylate-based composites. The polymerization shrinkage stress of P90 was lower than those of the methacrylate-based composites.

POLYMERIZATION SHRINKAGE KINETICS OF SILORANE-BASED COMPOSITES (Silorane 복합레진의 중합수축의 동력학)

  • Kwon, Young-Chul;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.1
    • /
    • pp.51-58
    • /
    • 2010
  • Dental composites have improved significantly in physical properties over the past few decades. However, polymerization shrinkage and stress is still the major drawback of composites, limiting its use to selected cases. Much effort has been made to make low shrinking composites to overcome this issue and silorane-based composites have recently been introduced into the market. The aim of this study was to measure the volumetric polymerization shrinkage kinetics of a silorane-based composite and compare it with conventional methacrylate-based composites in order to evaluate its effectiveness in reducing polymerization shrinkage. Five commercial methacrylate-based (Beautifil, Z100, Z250, Z350 and Gradia X) and a silorane-based (P90) composites were investigated. The volumetric change of the composites during light polymerization was detected continuously as buoyancy change in distilled water by means of Archemedes' principle, using a newly made volume shrinkage measurement instrument. The null hypothesis was that there were no differences in polymerization shrinkage, peak polymerization shrinkage rate and peak shrinkage time between the silorane-based composite and methacrylate-based composites. The results were as follows: 1. The shrinkage of silorane-based (P90) composites was the lowest (1.48%), and that of Beautifil composite was the highest (2.80%). There were also significant differences between brands among the methacrylate-based composites. 2. Peak polymerization shrinkage rate was the lowest in P90 (0.13%/s) and the highest in Z100 (0.34%/s). 3. The time to reach peak shrinkage rate of the silorane-based composite (P90) was longer (6.7 s) than those of the methacrylate-based composites (2.4-3.1 s). 4. Peak shrinkage rate showed a strong positive correlation with the product of polymerization shrinkage and the inverse of peak shrinkage time (R = 0.95).

Effect of Starvation on Substrate Utilization of Isolated Rat Atria (적출심장의 대사기질 이용에 대한 내인성 기질의 영향에 관한 연구)

  • Ko, Kye-Chang;Chung, Joo-Ho;Jung, Jee-Chang;Sim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.57-63
    • /
    • 1993
  • The abilities of metabolic substrates, glucose, pyruvate, and acetate to produce a maximal increase in the force of contraction of substrate-depleted atria from fed rats were compared to those from starved rats, in order to observe the effect of starvation on substrate utilization of the myocardium. Starvation results in a marked loss of body weight in rats. In contrast to the starved rats, the body weight of fed rats increased with time. When placed in substrate-free medium, atria from fed rats showed marked decline in contractile force. In contrast to the atria from fed rats, the substrate-depleted atria from starved rats showed much less decline of the force of contraction. In the substrate-free medium, abilities of glucose, pyruvate, and acetate to produce a maximal increase in the force of contraction of atria from fed rats were much greater than those from starved rats. The data from these studies indicate that in the substrate-free medium atria from starved rats utilize much less exogenous substrates than those from fed rats. These results suggest that starvation has no deleterious effect on contractile activity of the myocardium, and the starvation increase the storage of readily metabolizable endogenous substrstes useful for the functional activity of the isolated heart.

  • PDF

Behavior of Polymerization Shrinkage Stress of Methacrylate-based Composite and Silorane-based Composite during Dental Restoration (Methacrylate 기질 복합레진과 Silorane 기질 복합레진의 치아 수복 시 중합수축응력거동)

  • Park, Jung-Hoon;Choi, Nak-Sam
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.6-14
    • /
    • 2015
  • Polymerization shrinkage stress analysis of dimethacrylate-based composite (Clearfil AP-X, Kuraray) and silorane-based composite (Filtek P90, 3M ESPE) used for dental composite restorations was performed using strain-gage measurement and FEM analysis. A theoretical equation based on Young's modulus and polymerization shrinkage of the composite resin was proposed to predict the polymerization shrinkage stress. Experimental results showed that the maximum shrinkage stress of Clearfil AP-X was about 2.8 times higher than Filtek P90. FEM analysis agreed with such experimental stress behaviours and showed that the maximum Von-Mises stress appeared near the margin of the filled resin adhered with PMMA ring. The stress concentration at the interface on the specimen surface was higher than that in the interior. The maximum error of shrinkage stress by the theoretical equation was reasonable within 5% in comparison to FEM results under plane stress.

Effect of Lidocaine on Utilization of Endogenous Substrates for Contractile Process of Isolated Rat Atria (심근 수축에 쓰여지는 내인성 기질 대사에 대한 Lidocaine의 영향)

  • Ko Kye-Chang
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.1 s.57
    • /
    • pp.53-61
    • /
    • 1995
  • The experiments were performed to determine whether the cardiac depressant action of lidocaine is directly associated with the utilization of endogenous substrates in isolated rat atria, by using citrate and bicarbonate-free medium known as potent inhibitors of phosphofructokinases (PFK) enzyme step. Citrate and bicarbonate-free medium produced negative inotropic action of isolated rat atria incubated in normal Krebs-Ringer bicarbonate glucose medium. Pyruvate and acetate increased the force of contraction of atria depressed by citrate or bicarbonate-free medium, whereas fructose was without effect indicating the inhibitory effect of citrate and bicarbonate-free medium at some point in the glycolytic pathway such as the PFK step in atria. In the absence of exogenous substrate, citrate and bicarbonate-free medium produced a marked depression of the force of substrate-depleted atria indicating that utilization of endogenous substrate above the PFK step, probably cardiac glycogen, is also impaired by citrate or bicarbonate-free medium. Lidocaine produced further depression of the contractile force of atria depressed by citrate. These results argue strongly for an additional mechanism of cardiac depression caused by lidocaine involving the sites below the PFK.

  • PDF

Effect of Starvation on Contractility of Lidocaine-Depressed Isolated Rat Atria (Lidocaine 억제 심장의 수축성에 대한 내인성 지질의 영향)

  • Ko, Kye-Chang
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.59-65
    • /
    • 1994
  • The experiments were performed to determine whether lidocaine interferes with the utilization of lipid as source of energy fuel for the contractile process by the isolated rat atria. Rats were starved for two days in order to inerease the lipid content of the heart. Atria from starved rats were better able to maintain their contractility in the absence of exgenous substrate, and also were more resistant to depression by lidocaine than atria from fed rats. Starvation results in a marked loss of body weight in rats. In contrast to the starved rats, the body weight of fed rats inereased with time. The smaller reduction in contractile activity of atria from the starved rats may suggest that endogenous lipid accumulates during starvation period and is used as an energy source for the contractile process in the face of a lidocaine-induced blockade in glycolysis.

  • PDF

Culturing the Human Dental Pulp cells in the Collagen Matrix and on the ground tooth surface (콜라젠 기질(COLLAGEN MATRIX)과 마모된 치아표면에서의 치수세포 배양에 관한 연구)

  • Park, Sang-Hyuk
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.5
    • /
    • pp.419-424
    • /
    • 2003
  • 이 연구의 목적은 원래의 치수조직과 유사한 조직을 재생하기 위한 pulp tissue engineering의 한 방법으로 건전한 조직으로부터 배양된 치수세포와 쥐의 조섬유세포(NIH 3T3 cell)를 Rat tail type I collagen solution에서 3차원적으로 관찰하기 위한 것으로, 콜라젠 젤의 수축량과 세포의 증식 량을 비교하였으며, 또한 마모된 사람치아의 표면과 배양용기에서 두 세포의 증식 량을 비교하여 다음과 같은 결과를 얻었다. 1. 콜라젠 젤에 NIH 3T3 세포를 배양한 경우 그 수축량은 최소였으나, 치수세포를 배양한 경우 그 수축량은 현저하였다. 2. 서로 다른 수의 치수세포를 콜라젠 젤에서 배양시킨 경우 세포 수가 많을수록 수축량이 증가하였으며, 세포가 없는 콜라젠 젤은 수축하지 않았다. 3. 치수세포를 콜라젠 젤에서 18일간 배양시킨 후 세포의 증식은 거의 없는 반면, NIH 3T3 세포는 계속 증식하였다. 4. 마모된 사람 치아 표면과 배양 용기에서 치수세포와 NIH 3T3세포를 배양한 경우 NIH 3T3세포가 치수세포에 비해 빠르게 증식 하였으며 , 특히 사람 치아의 표면에서 NIH 3T3세포가 현저히 빠른 증식을 보였다. 이상의 결과는 치수세포를 type I collagen gel에서 3차원 적으로 배양 후 치수조직의 재생을 유도하는 pulp tissue engineering에 관한 연구에 발판이 될 것으로 사료된다.

The Effects of Metabolic Substrates on Contractility of Isolated Rat Atria Depressed with Bupivacaine (Bupivacaine에 의해 억제된 심근수축력에 대한 대사기질의 영향)

  • Park, Seung-Joon;Chang, Joo-Ho;Jung, Jee-Chang;Ko, Kye-Chang
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.41-48
    • /
    • 1992
  • A concentration of 0.01 mM bupivacaine was necessary to maintain approximately 50% depression of contractility of rat atria suspended in a modified Krebs-Ringer bicarbonate glucose medium, pH 7.4 at $30^{\circ}C$. Sodium pyruvate, sodium acetate, and fructose partially restored the contractility of the bupivacaine-depressed atria. However, 20 mM glucose had no effect on the bupivacaine-depressed atria, although this concentration of glucose markedly increased the contractility of normal atria not to be exposed to bupivacaine. Contractility of normal atria was not significantly influenced by sodium pyruvate, sodium acetate, and fructose. The results suggested that at least part of the negative inotropic action of bupivacaine is the result of inhibition of glucose uptake or utilization in the glycolytic pathway, and further pinpoint the blockade as an early step in the glycolytic sequence prior to the phosphofructokinase step.

  • PDF

Evaluation of polymerization shrinkage stress in silorane-based composites (Silorane계 복합레진의 중합수축응력의 평가)

  • Ryu, Seung-Ji;Cheon, Ji-Hoon;Min, Jeong-Bum
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.3
    • /
    • pp.188-195
    • /
    • 2011
  • Objectives: The purpose of this study was to evaluate the polymerization shrinkage stress among conventional methacrylate-based composite resins and a silorane-based composite resin. Materials and Methods: The strain gauge method was used for the determination of polymerization shrinkage strain. Specimens were divided by 3 groups according to various composite materials. Filtek Z-250 (3M ESPE) and Filtek P-60 (3M ESPE) were used as a conventional methacrylate-based composites and Filtek P-90 (3M ESPE) was used as a silorane-based composites. Measurements were recorded at each 1 second for the total of 800 seconds including the periods of light application. The results of polymerization shrinkage stress were statistically analyzed using One way ANOVA and Tukey test (p = 0.05). Results: The polymerization shrinkage stress of a silorane-based composite resin was lower than those of conventional methacrylate-based composite resins (p < 0.05). The shrinkage stress between methacrylate-based composite resin groups did not show significant difference (p > 0.05). Conclusions: Within the limitation of this study, silorane-based composites showed lower polymerization shrinkage stress than methacrylate-based composites. We need to investigate more into polymerization shrinkage stress with regard to elastic modulus of silorane-based composites for the precise result.

Polymerization Shrinkage Behavior Measured by Digital Image Correlation for Methacrylate-based and Silorane-based Composites During Dental Restoration (디지털 이미지 상관법을 이용한 Methacrylate기질과 Silorane기질 복합레진의 치아 수복 시 중합수축거동)

  • Park, Jung-Hoon;Choi, Nak-Sam
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.125-132
    • /
    • 2020
  • The polymerization shrinkage behavior of dimethacrylate-based composite (Clearfil AP-X, Kuraray) and silorane-based composite (Filtek P90, 3M ESPE) used for dental composite restorations was measured using digital image correlation method. The stress distribution on the surface of specimen was calculated by finite element analysis with equivalent elastic modulus and was compared with the measured shrinkage distribution. Camera images were monitored by a CCD camera during and after the irradiation of light. As a result of the DIC analysis, a non-uniform shrinkage distribution was observed in both composite resins, and the resin core inside the ring specimen had free flowability, leading to in greater shrinkage strain than the resin/ring interfacial region. It was observed that as the distance from the center of the resin increased, the radial average shrinkage strain decreased. The radial average shrinkage strain during light irradiation occurred to be 33% for P90 and 57% for AP-X of the entire strain at the end of the test. The shrinkage behavior of P90 and AP-X was measured to be significantly different from each other during light irradiation. In the resin near the resin/ring interface, it was confirmed that the tensile strain rapidly formed to increase after light irradiation, causing a tensile stressed, interface weak.