• Title/Summary/Keyword: 기준주파수

Search Result 1,157, Processing Time 0.03 seconds

X-band CW Doppler Radar Development for Measurement of Muzzle Velocity (포구 속도 측정을 위한 X-band CW 도플러 레이더 개발)

  • Kim, Jae-Heon;Koh, Yeong-Mok;NamGung, Sung-Won;Jang, Yong-Sik;Park, Yong-Seok;Ra, Keuk-Hwan;Choi, Ik-Kwon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.460-470
    • /
    • 2009
  • In this paper, we described the implementation of the X-Band continuous-wave doppler radar for muzzle velocity measurement. The radar is consisted of microwave transceiver, signal processor, power board, and the measuring program was developed for the operating and field test. The operating frequency of doppler radar is able to set ${\pm}3\;MHz$ with 5 channel from the center frequency, and the output power is 25 dBm. The minimum receiving power is -117 dBm. The radar would obtain the doppler frequency from the artillery, and calculate accurate velocity point and then estimate muzzle velocity. The performance test for this radar was done with 155 mm at barrel and tripod mounted, and also compared the performance with the reference radar. As a result, the performance of the our new radar is equal with the reference one.

Design and Fabrication of Clock Recovery Module for Gap Filter of Satellite DMB (위성 DMB 중계기용 클럭 재생 모듈 설계 및 제작)

  • Hong, Soon-Young;Shin, Yeoung-Seop;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.423-429
    • /
    • 2007
  • The clock recovery module of gap filler for satellite DMB is proposed. Proposed module sustains the output frequency of 10 MHz whether the received signal from the satellite is unstable or cut off within 0.5 sec. The advantages of this module is without frequency tuning at regular interval and low material cost. This module is fabricated by using CPLD as clock recovery IC and new type of loop filter for satisfying the fast lock time and long hold over time simultaneously. The measured performance of the fabricated module has a holdover time of 11 sec at frequency stability less than 0.01 ppm, and phase noise of -113 dBc/Hz at 100 Hz offset.

Dispersion constraints and the Hilbert transform for electromagnetic system response validation (전자기 탐사 시스템 반응의 타당성 확인을 위한 분산 관계식과 힐버트 변환)

  • Macnae, James;Springall, Ryan
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • As a check on calibration and drift in each discrete sub-system of a commercial frequency-domain airborne electromagnetic system, we aim to use causality constraints alone to predict in-phase from wide-band quadrature data. There are several possible applications of the prediction of in-phase response from quadrature data including: (1) quality control on base level drift, calibration and phase checks; (2) prediction and validation of noise levels in in-phase from quadrature measurements and vice versa and in future; and (3) interpolation and extrapolation of sparsely sampled data enforcing causality and better frequency-domain-time-domain transformations. In practice, using tests on both synthetic and measured Resolve helicopter-borne electromagnetic frequency domain data, in-phase data points could be predicted using a scaled Hilbert transform with a standard deviation between 40 and 80 ppm. However, relative differences between base levels between flight could be resolved to better than 1 ppm, which allows an independent quality control check on the accuracy of drift corrections.

A Phase Locked Loop with Resistance and Capacitance Scaling Scheme (저항 및 커패시턴스 스케일링 구조를 이용한 위상고정루프)

  • Song, Youn-Gui;Choi, Young-Shig;Ryu, Ji-Goo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.37-44
    • /
    • 2009
  • A novel phase-locked loop(PLL) architecture with resistance and capacitance scaling scheme has been proposed. The proposed PLL has three charge pumps. The effective capacitance and resistance of the loop filter can be scaled up/down according to the locking status by controlling the direction and magnitude of each charge pump current. This architecture makes it possible to have a narrow bandwidth and low resistance in the loop filter, which improves phase noise and reference spur characteristics. It has been fabricated with a 3.3V $0.35{\mu}m$ CMOS process. The measured locking time is $25{\mu}s$ with the measured phase noise of -105.37 dBc/Hz @1MHz and the reference spur of -50dBc at 851.2MHz output frequency

Analysis of Voltage Delay and Compensation for Current Control in H-Bridge Multi-Level Inverter (H-브릿지 멀티레벨 인버터의 전압 지연 해석 및 전류 제어 보상)

  • Park, Young-Min;Ryu, Han-Seong;Lee, Hyun-Won;Jung, Myung-Gil;Lee, Se-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.43-51
    • /
    • 2010
  • This paper proposes an analysis of voltage delay and compensation for current control in H-Bridge Multi-Level (HBML) inverters for a medium voltage motor drive with vector control. It is shown that the expansion and modularization capability of the HBML inverter is improved in case of using Phase-Shifted Pulse Width Modulation (PSPWM) since individual inverter modules operate more independently. But, the PSPWM of HBML has a phase difference between reference voltage and real voltage, which can cause instability in the current regulator at high speed where the ratio of the sampling frequency to the output frequency is insufficient. This instability of the current regulator is removed by adding a proposed method which compensate a phase difference between reference voltage and real voltage. The proposed method is suitable for HBML inverter controlled by PSPWM with low switching frequency and high speed motor drive. The validity of the proposed method is verified experimentally on 6,600[V] 1,400[kW] induction motor fed by an 13-level HBML inverter.

The Design and SAR Analysis of the Spiral Planar Monopole Antenna for Dual-Band (이중 대역 스파이럴 평면형 모노폴 안테나 설계 및 SAR 분석)

  • Kim, Nam;Park, Sang-Myeong;Kim, Joung-Myoun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.12
    • /
    • pp.1370-1382
    • /
    • 2007
  • In this paper, the spiral planar monopole antenna mounted on a Cellular/WCDMA handset is designed. Frequency characteristics is optimized with various design parameters. The two spiral lines are adopted in order to implement Cellular frequency bandwidth and WCDMA frequency bandwidth. The bandwidth of the realized antenna is $0.805{\sim}0.892$ GHz(10 %) and $1.867{\sim}2.302$ GHz(21 %) for VSWR${\leq}2$ which contain the proposed frequency bandwidth. In human head, the simulated value on 1 g and 10 g averaged SAR caused by electromagnetic wave radiated in the designed antenna is compared with the measured value. As a result, the measured values of 1 g and 10 g averaged SAR were similar to the simulated values, which were lower than the SAR guidelines.

A New Parallel Method for Narrowband Active Noise Control (협대역 능동 소음 제어를 위한 새로운 병렬 기법)

  • Kim, Seong-Woo;Park, Young-Cheol;Seo, Young-Soo;Youn, Dae Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.6
    • /
    • pp.375-382
    • /
    • 2014
  • In many practical active noise control applications, the primary noise contains multiple closely-spaced harmonics. A narrowband ANC system consists of adaptive filters excited by a composite reference signal, which is the set or sum of sinusoids. This paper analyzes and shows that the convergence speeds of the direct form, parallel form, and simplified parallel form narrowband ANC systems are affected by the fundamental frequency and frequency separation between two adjacent sinusoids in the reference signal. This paper also proposes the new simplified parallel form narrowband ANC system whose convergence speed is independent on the frequency of the reference signal. Computer simulations are conducted to verify the analysis presented in the paper and to compare the proposed narrowband ANC system with the conventional narrowband ANC system.

A Study on Channel Access Mechanism of LTE for Coexistence with Wi-Fi on 5 GHz Unlicensed Spectrum (5 GHz 비면허대역 무선랜과의 상호공존을 위한 LTE 시스템의 채널접속방법에 관한 연구)

  • Um, Jungsun;Yoo, Sungjin;Park, Seungkwon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.374-380
    • /
    • 2015
  • With explosion of wireless traffic it is required to further investigate the technologies on acquiring available spectrum resources and on sharing frequency with existing users. In 3GPP, it is started to study on feasibility and functional requirement of LTE standard in order to extend cellular services offered on only licensed band to 5 GHz unlicensed band. Operating scenario on LTE in unlicensed band is focused on carrier aggregation with licensed band, and the coexistence with Wi-Fi services in 5 GHz band is concerned as a major requirement. For a single global solution framework for licensed assisted access to unlicensed spectrum, listen-before-talk(LBT) mechanism of European regulation for fair access to channel under the coexistence environments is currently examined in 3GPP. In this paper, we evaluate two types of LBT, frame based equipment and load based equipment, with considering LTE carrier aggregation feature and performances of file transferred time and throughput.

A study on the sharing between NGSO/MSS service link and existing fixed-service microwave system (NGSO / MSS 서비스링크와 기존 고정서비스 마이크로웨이브 시스템간의 주파수 공유에 관한 연구)

  • 이성수;조삼모;김혁제
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.1
    • /
    • pp.115-125
    • /
    • 1998
  • This paper examined the feasibility of adding a new NGSO/MSS(Non-Geostationary orbit/Mobile satellite service) service link to a frequency band which is already allocated to fixed-service microwave(M/W) system. To achieve this goal, the NGSO/MSS handset performance under the influence of the M/W multiple stations and the influence of handsets on the M/W station were both analyzed. Sharing criterions were also obtained by means of coordination contour in the former case, and handset capacity in the latter case. As the results, it was proven that sharing was feasible only when the vertical distance between handset and trendline was above 4 km except front and back points of M/W antenna bore sight under influence of 9 hops(the distance between hops = 50 km) M/W system on the NGSO/MSS handset, and only when the capacity of handset was below $7.0\times10^{-14}$ handsets/ $m^{2}$ under influence of handsets on the M/W station.

  • PDF

A Frequency-Sharing Method to Use Frequency Resources Efficiently (효율적인 주파수 이용을 위한 주파수 공유 방법)

  • Kang, Sang-Gee;Hwang, Taek-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1349-1355
    • /
    • 2008
  • Recently many short-range transceiver systems, such as ZigBee, Bluetooth and RFID(Radio Frequency Identification), have been developed. These systems are mostly low-power transceivers. In the near future many more low-power transceivers are appeared for WPAN(Wireless Personal Area Network) and interference mitigation technologies are necessary to the low-power transceivers for using frequency resources efficiently. In this paper we consider two methods for sharing frequency resources. The first case is that a frequency band previously assigned fer a certain system is shared and the second case is that the white frequency band is shared. We study the method and conditions for sharing frequency resources in the above two cases. When a frequency band is shared with ZigBee, RFID, DCP (Digital Cordless Phone) and Bluetooth as an example for the first case, the sharing conditions are investigated and the results are presented. We propose a balancing factor to maintain an equal transmitting conditions between systems having a different interference mitigation technique. In the interference simulation we use FH(Frequency Hopping) as a reference system and 0.9 of a balancing factor for LBT(Listen Before Talk) and 0.8 for DS(Direct Spreading). From the simulation results we know that a balancing factor reduces interference probability therefore many more systems can be operated in the same frequency bands compared with the case without using a balancing factor.