• Title/Summary/Keyword: 기울기 방향성 히스토그램

Search Result 8, Processing Time 0.018 seconds

Multiple Pedestrians Tracking using Histogram of Oriented Gradient and Occlusion Detection (기울기 히스토그램 및 폐색 탐지를 통한 다중 보행자 추적)

  • Jeong, Joon-Yong;Jung, Byung-Man;Lee, Kyu-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.812-820
    • /
    • 2012
  • In this paper, multiple pedestrians tracking system using Histogram of Oriented Gradient and occlusion detection is proposed. The proposed system is applicable to Intelligent Surveillance System. First, we detect pedestrian in a image sequence using pedestrian's feature. To get pedestrian's feature, we make block-histogram using gradient's direction histogram based on HOG(Histogram of Oriented Gradient), after that a pedestrian region is classified by using Linear-SVM(Support Vector Machine) training. Next, moving objects are tracked by using position information of the classified pedestrians. And we create motion trajectory descriptor which is used for content based event retrieval. The experimental results show that the proposed method is more fast, accurate and effective than conventional methods.

Content-based image retrieval using adaptive representative color histogram and directional pattern histogram (적응적 대표 컬러 히스토그램과 방향성 패턴 히스토그램을 이용한 내용 기반 영상 검색)

  • Kim Tae-Su;Kim Seung-Jin;Lee Kuhn-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.119-126
    • /
    • 2005
  • We propose a new content-based image retrieval using a representative color histogram and directional pattern histogram that is adaptive to the classification characteristics of the image blocks. In the proposed method the color and pattern feature vectors are extracted according to the characteristics o: the block classification after dividing the image into blocks with a fixed size. First, the divided blocks are classified as either luminance or color blocks depending on the saturation of the block. Thereafter, the color feature vectors are extracted by calculating histograms of the block average luminance co-occurrence for the luminance block and the block average colors for the color blocks. In addition, block directional pattern feature vectors are extracted by calculating histograms after performing the directional gradient classification of the luminance. Experimental results show that the proposed method can outperform the conventional methods as regards the precision and the size of the feature vector dimension.

A Study on Edge Detection using Modified Histogram Equalization (변형된 히스토그램 평활화를 적용한 에지 검출에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1221-1227
    • /
    • 2015
  • Edge detection is one of the important technologies to simplify images in the text, lane and object recognition implementation process, and various studies are actively carried out at home and abroad. Existing edge detection methods include a method to detect edge by applying directional gradient masks in spatial space, and a mathematical morphology-based edge detection method. These existing detection methods show insufficient edge detection results in excessively dark or bright images. In this regard, to complement these drawbacks, we proposed an algorithm using the Sobel and histogram equalization among the existing methods.

Diagnosis of Diffuse Lung Disease by Quantitative Analysis (정량적 방법에 의한 미만성 폐질환 진단)

  • 원철호;김명남;이종민;최태진;강덕식
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.5
    • /
    • pp.545-557
    • /
    • 1999
  • 본 논문에서는 호흡 연동 장치와 EBT로부터 획득한 폐실질 영상에 대하여 동적 윤곽선 모델 방법과 영역 성장법을 이용하여 폐실질 영역을 검출하였다. 그런 다음 , 검출된 폐실질 영역내에서의 각종 정량적 요소들을 도출하여 농도 분포 곡선에대한 분석을 하였다. 동적 윤곽선 모델방법에서 페실질 영역의 낮은 휘도 준위와 폐의 윤곽선 벡터 방향을 고려한 에너지 함수를 제안하였다. 그리고 폐실질 영역 성장법에서는 폐실질 영역내의 분포한 공기 성분에 대한 화소를 확장시켜 효과적으로 폐실질 영역을 검출하였다. 추출된 폐실질 영역내의 빈도 분포 곡선을 분석하여 정상군과 비교한 결과 만성 폐쇄성 폐질환자에서는 정상인에 비하여 평균 농도,최대 빈도 농도, 최대 상승 기울기 농도가 낮았으며, 농도 분포곡선은 더 낮은 쪽으로 이동하였음을 알 수 있었다. 또한, 특발성 폐섬유증 환자에서는 평균 농도, 최대 빈도 농도, 최대 상승 기울기 농도가 모두 증가되었고 농도 분포 곡선은 더 높은쪽으로 이동하였다. 폐실질 영역을 추출하여 히스토그램 분포에 대한 정량적 분석을 함으로써 정상인으로부터 만성 폐쇄성 질환자의 폐섬유증 환자를 구분할 수 있었다.

  • PDF

Split Image Coordinate for Automatic Vanishing Point Detection in 3D images (3차원 영상의 자동 소실점 검출을 위한 분할 영상 좌표계)

  • 이정화;김종화;서경석;최흥문
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1891-1894
    • /
    • 2003
  • 본 논문에서는 분할 영상 좌보계 (split image coordinate: SIC)를 제안하여 3차원 영상의 주요 특징 중의 하나인 유, 무한 소실점을 그 위치의 무한성이나 카메라의 보정과 관계없이 정확하게 자동 추출하였다. 제안한 방법에서는 가우시안 구 (Gaussian sphere) 기반의 기존 방법들과는 달리 영상 공간을 누적 공간으로 활용함으로써 카메라 보정이나 영상의 사전정보가 없어도 원 영상의 정보 손실 없이 소실점을 추출할 수 있고, 영상을 무한대까지 확장한 후 분할하여 재정의 함으로써 유, 무한 소실점을 모두 추출할 수 있도록 하였다. 정확한 소실점의 검출을 위하여 직선 검출 과정에서는 방향성 마스크 (mask)를 사용하였으며, 직선들의 군집화 (clustering) 과정에서는 기울기 히스토그램 방법과 수평/수직 군집화 방법을 적응적으로 적용하였다. 제안한 방법을 합성 영상 및 건축물 (man-made environment) 영상에 적용시켜 유, 무한 소실점들을 효과적이고 정확하게 찾을 수 있음을 확인하였다.

  • PDF

Depth-Based Recognition System for Continuous Human Action Using Motion History Image and Histogram of Oriented Gradient with Spotter Model (모션 히스토리 영상 및 기울기 방향성 히스토그램과 적출 모델을 사용한 깊이 정보 기반의 연속적인 사람 행동 인식 시스템)

  • Eum, Hyukmin;Lee, Heejin;Yoon, Changyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.471-476
    • /
    • 2016
  • In this paper, recognition system for continuous human action is explained by using motion history image and histogram of oriented gradient with spotter model based on depth information, and the spotter model which performs action spotting is proposed to improve recognition performance in the recognition system. The steps of this system are composed of pre-processing, human action and spotter modeling and continuous human action recognition. In pre-processing process, Depth-MHI-HOG is used to extract space-time template-based features after image segmentation, and human action and spotter modeling generates sequence by using the extracted feature. Human action models which are appropriate for each of defined action and a proposed spotter model are created by using these generated sequences and the hidden markov model. Continuous human action recognition performs action spotting to segment meaningful action and meaningless action by the spotter model in continuous action sequence, and continuously recognizes human action comparing probability values of model for meaningful action sequence. Experimental results demonstrate that the proposed model efficiently improves recognition performance in continuous action recognition system.

Method of Human Detection using Edge Symmetry and Feature Vector (에지 대칭과 특징 벡터를 이용한 사람 검출 방법)

  • Byun, Oh-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.57-66
    • /
    • 2011
  • In this paper, it is proposed for algorithm to detect human efficiently using a edge symmetry and gradient directional characteristics in realtime by the feature extraction in a single input image. Proposed algorithm is composed of three stages, preprocessing, region partition of human candidates, verification of candidate regions. Here, preprocessing stage is strong the image regardless of the intensity and brightness of surrounding environment, also detects a contour with characteristics of human as considering the shape features size and the condition of human for characteristic of human. And stage for region partition of human candidates has separated the region with edge symmetry for human and size in the detected contour, also divided 1st candidates region with applying the adaboost algorithm. Finally, the candidate region verification stage makes excellent the performance for the false detection by verifying the candidate region using feature vector of a gradient for divided local area and classifier. The results of the simulations, which is applying the proposed algorithm, the processing speed of the proposed algorithms is improved approximately 1.7 times, also, the FNR(False Negative Rate) is confirmed to be better 3% than the conventional algorithm which is a single structure algorithm.

A Driver's Condition Warning System using Eye Aspect Ratio (눈 영상비를 이용한 운전자 상태 경고 시스템)

  • Shin, Moon-Chang;Lee, Won-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.349-356
    • /
    • 2020
  • This paper introduces the implementation of a driver's condition warning system using eye aspect ratio to prevent a car accident. The proposed driver's condition warning system using eye aspect ratio consists of a camera, that is required to detect eyes, the Raspberrypie that processes information on eyes from the camera, buzzer and vibrator, that are required to warn the driver. In order to detect and recognize driver's eyes, the histogram of oriented gradients and face landmark estimation based on deep-learning are used. Initially the system calculates the eye aspect ratio of the driver from 6 coordinates around the eye and then gets each eye aspect ratio values when the eyes are opened and closed. These two different eye aspect ratio values are used to calculate the threshold value that is necessary to determine the eye state. Because the threshold value is adaptively determined according to the driver's eye aspect ratio, the system can use the optimal threshold value to determine the driver's condition. In addition, the system synthesizes an input image from the gray-scaled and LAB model images to operate in low lighting conditions.