최근 악성코드에 의한 피해사례가 매년 증가하고 있다. 전통적인 시그니처 기반 안티바이러스 솔루션은 제로데이 공격이나 랜섬웨어처럼 전례가 없는 새로운 위협에 속수무책일 정도로 취약하다. 그럼에도 불구하고 많은 기업이 다중 엔드포인트 보안 전략의 일환으로 시그니처 기반 안티바이러스 솔루션을 유지하고 있다. 이에 응하고자 다양한 악성코드 분석기술이 출현해왔으며, 최근의 연구들은 부분 머신러닝을 이용하여 기존에 진행했던 시그니쳐 기반의 한계를 보완하고 노력하고 있다. 본 논문은 머신러닝을 이용한 바이러스 분석 모델과 머신러닝 알고리즘 중 GRU를 이용한 솔루션 시스템을 제안한다. 기존 DB Server를 통해 머신러닝을 학습 시키며 다양한 샘플과 형식을 이용하여 머신러닝을 학습하고 이를 이용해 새로운 악성코드, 변조된 악성코드의 탐지율을 높일 수 있다.
본 연구는 대학 이러닝 학습자들의 학습 시 공간 데이터를 활용한 이러닝 학습패턴에 따라 학습자등의 출석률과 학업성취도 차이를 규명하였다. 연구대상은 3년간 총 68개 이러닝 강좌, 수강생 13,611명의 이러닝 데이터를 수집하였고, 자료분석은 t검증, 이원변량분석을 활용하였다. 본 연구결과는 다음과 같이 제시한다. 첫째, 대학 이러닝 학습자들의 학습공간에 따른 출석률과 학업성취도 차이를 분석한 결과 교내 주학습자가 출석률과 학업성취도에서 교외 주학습자들 보다 높은 점수를 보였고, 학업성취도는 통계적인 유의성이 나타났다. 둘째, 대학 이러닝 학습자들의 일 단위 학습시간대에서는 오전시간대 주학습자, 오후시간대 주학습자, 야간시간대 주학습자 순으로 출석률과 학업성취도가 높게 나타났으며, 모두 유의미한 차이가 있는 것으로 분석되었다. 주 단위 학습시간대에서는 평일시간대의 주학습자들이 주말시간대 주학습자들 보다 출석률과 학업성취도에서 더 높게 나타났으며, 통계적으로도 유의한 차이가 분석되었다.
이제 e-러닝은 전 세계적으로 21세기형 교육 패러다임으로 부상하였고 단순히 정보통신매체 기반의 학습 개념을 뛰어 넘어서 국가 및 기업의 인적자원 개발을 통한 경쟁력 강화의 핵심 동력이 된 것이다. 현재 국내 초중고, 대학, 기업 등의 e-러닝 확산 속도가 급속도인 반면 정부 및 공공기관은 상대적으로 빠르지 못한 편이다. 이에 본 연구는 정부 및 공공기관의 e-러닝 도입 현황과 노동부의 도입 사례를 살펴보고 현재의 문제점과 실제적인 활성화를 위한 성공 전략을 제시하고자 한다.
지난 수년 동안 우리나라에서 이 러닝은 특히 기업을 중심으로 빠른 시간에 확산이 되었으며, 양적으로 팽창한 만큼 질적인 부분에 대한 의구심이 팽배한 것이 사실이다. 기존의 오프라인 교육에 비하여 이 러닝의 질적 수준을 분석하는 이유는 그 동안 급속도로 발전된 이 러닝이 학습자들에게 훌륭한 학습경험을 주지 못하였고, 생각보다 결과가 저조하였으며, 무엇보다 투자된 비용에 비해 효과성이 저조하였다는 지적이 많기 때문이다 . 그동안 이 러닝에서의 많은 경험은 오랜 세월동안 익숙해왔던 오프라인수업을 중심으로 구성되어왔으며, 이 러닝에 종사하는 많은 전문가들도 대부분 오프라인에서의 교수-학습에 대한 경험을 바탕으로 이 러닝의 체제를 이해하여 왔다. Dublin&Cross (2003)에 의하면 과연 얼마나 많은 사람들이 이 러닝에 대한 공통된 개념을 가지고 있으며, 학습자들이 단지 문제없이 이 러닝에 접속하여 끝까지 기술적인 문제없이 도달하는데서 끝나지 않고 얼마나 효과적이고 효율적으로 이 러닝이 의도한 학습과정에 흡수되는 가를 분석해 낼 수 있는가에 따라 이 러닝의 성공여부가 달려 있다고 한다. 본 논문은 이 러닝의 확산속도에 맞추어 질적 향상이 쉽게 이루어지지 않는 이 러닝의 현상을 분석해보고 이 러닝의 질적 발전을 위하여 고려하여야 하는 요소들은 무엇이 있으며 이들이 어떻게 조화를 이루어야 이 러닝이 질적으로 우수성을 가질 수 있는지에 대한 방안을 제시해 보고자 한다.
본 연구는 이러닝 콘텐츠에 활용되고 있는 동영상, 이미지 등의 다양한 멀티미디어 학습자원을 효과적이고 효율적으로 개발, 관리하고 공유할 수 있는 시스템을 개발하기 위한 목적으로 수행되었다. 이를 위해 방송, 언론, 기업 등에서 동영상, 사진, 플래시와 같은 미디어자료들을 관리하는 미디어자산관리시스템을 분석하여 멀티미디어자원관리시스템으로 재설계하였다. 이 시스템은 IPTC 표준을 따르는 미디어자산관리시스템의 6개 메타데이터 항목을 SCORM에 대응시켜 변환하였으며 윈도 2003 서버와 오라클 RDBMS를 사용하였고 사용자용과 관리자용으로 구분하여 개발하였다.
본 연구의 목적은 문제중심학습(PBL) 및 플립러닝(Flipped Learning)을 적용한 기업가정신온라인교육의 효과성을 검증하는데 있다. 기업가정신온라인교육은 크게 개인학습 및 팀(Team)학습 영역으로 구분되며, 1단계(스타트업과 기업가정신) 및 2단계(아이디어 제시 및 상호 평가)에서 시작하여 7단계(사업계획서 작성) 및 9단계(랜딩페이지/프로토타입)를 거쳐서 10단계(데모데이) 및 11단계(지속성장과 네트워킹)로 마무리된다. 개인학습영역과 병행된 팀학습 영역은 3단계(건강한 조직 구성)를 통해 함께할 동료를 찾고, 4단계(디자인씽킹)를 통해 현장중심의 문제해결방법을 실행하며, 6단계(비즈니스모델캔버스) 및 7단계(사업계획서)를 통해 비즈니스모델을 구현하고 구체적인 사업계획을 수립하며, 9단계(랜딩페이지 및 프로토타입) 및 10단계(데모데이)를 통해 시장에서 제품을 검증할 수 있게 설계되었다. 특히 각 단계별로 10개 내외의 동영상 등의 학습 자료를 제시하고, 각 학습내용에 대해 피드백 작성을 의무화시키도록 시스템화 했으며, 오프라인수업에서는 선행 학습한 내용에 대한 토론 및 팀활동 중심으로 진행함으로써 PBL 및 플립러닝 기반의 기업가정신교육을 진행할 수 있도록 설계하였다. 연구결과, PBL 및 플립러닝 방식의 기업가정신교육을 적용한 집단은 통제집단에 비해 교육이후 문제해결능력 및 창업의지, 기업가정신이 더욱 높게 향상되었고, '창업 진행 및 준비 중'이라는 답변이 1.83배 높게 나타났다. 이러한 연구결과는 향후 PBL 및 플립러닝에 기반한 기업가정신 및 창업교육을 설계할 때 유용한 기초자료로 활용될 수 있을 것이다.
오늘날의 고객은 다양한 정보를 통해 넓은 선택의 기회를 가진다. 이러한 상황에서 기업들은 고객과의 지속적인 관계를 유지하기 어려워짐에 따라 고객 유지와 신규 고객 유치를 위한 마케팅 비용을 천문학적으로 지출하고 있다. 기업들이 이탈하는 고객의 속성을 분석하고 이탈 시점을 예측할 수 있다면 마케팅에 사용되는 비용과 노력을 최소화할 수 있을 것으로 예측된다. 이를 위해 본 논문에서는 효과적인 고객 이탈 예측을 위한 딥러닝 기반의 이탈 예측 모델을 제안한다. 이 모델은 모바일 RPG 게임 고객의 시계열적인 행동 패턴을 이용하여 이탈을 예측하는 모델로, 예측을 위한 학습을 할 때 모델링된 고객 데이터를 분석하여 이탈 고객의 특성을 파악할 수 있게 한다. 실험을 통해 이탈 고객과 미 이탈 고객의 모델링된 값이 각각 특정 속성에 치중되어 있는 것을 확인하였고, 제안 모델이 합리적으로 고객의 이탈을 예측하는 것을 보였다.
본 논문에서는 최근에 외국어로서의 한국어 학습 수요가 증가하고 있는 현실을 반영하여, 한국어를 외국어로 사용하는 한국어 수요자의 접근성을 고려한 초보적인 한국어 읽기 학습을 지원하는 학습지원 시스템을 설계하여 제시한다. 우리나라는 경제개발에 성공하고 주요 기간산업에서 세계적인 기업이 탄생하여 세계적으로 관심을 끌고 있다. 이런 현상에 따라서 결혼 이민자는 물론 국내 산업체에 취업하기 위해 입국하는 동남아시아를 중심으로 하는 근로자는 물론 첨단산업에 종사하기 위해 고학력의 외국인들이 많이 입국하고 있으며, k-pop을 비롯한 '한류'에 대한 관심이 고조되어, 다양한 국가의 다양한 계층에서 한국어에 대한 관심이 증가하고 있다. 이와 같은 현실에 비하여 특히 경제력과 학습수준이 낮은 외국인들은 정규적인 교육의 기회를 갖지 못하게 되어 여러 가지의 문제를 야기하고 있다. 이런 현실을 반영하여 초보적인 한국어 학습, 특히 읽기 학습을 지원하는 한국어 이러닝 시스템을 설계하여 제시하였다.
웹 사이트 사용자들은 자신의 취향에 맞춘 웹 사이트 개인화 서비스를 원한다. 이에 따라 관련 기업들은 웹 사이트의 회원가입을 통해 사용자들의 개인 정보를 관리하여 개인화 서비스를 지원하고 있다. 하지만 기업들의 개인 정보 유출 사고와 잘못된 기업 간 공유로 개인 정보보호 관리에 어려움이 있다는 문제점이 있다. 본 논문에서는 클라이언트 기반 딥러닝(Client-based Deep Learning)과 웹 브라우저 표준 데이터베이스 IndexedDB를 사용하여 검색 카테고리 추천 시스템을 구현한다.
코로나19 대유행으로 세계경제포럼에서 그레이트 리셋이 논의되면서 제4차산업혁명의 동력인 인공지능도 조명을 받고 있다. 그러나 인공지능 분야의 기업 연구는 아직도 희소하다. 2000년 이후 관련 연구는 기존 기업에 어떻게 인공지능을 적용하여 가치를 창출할 것인가에 초점이 맞춰져 있으며, 신생기업들이 어떻게 기회를 포착하고 기존 사업자들 사이에 진입하여 새로운 가치를 창출하는지에 대한 연구는 거의 찾아볼 수 없다. 이에 본 연구는 소프트웨어의 세부 분야인 인공지능 기반 신생기업들이 기존 소프트웨어 산업과 어떻게 다른 혁신패턴을 갖는가라는 연구 질문을 가지고 다층적 접근론의 종합적 틀을 활용하여 신생 기업들의 사례를 분석하였다. 대상 기업들은 창업 7년 내 의료, 금융, 마케팅/광고, 유통, 제조 분야에서 의도적으로 표집된 머신러닝 모델링 전문 신생 기업들로 벤처기업 인증을 받은 고성장 기업들이다. 분석 결과 기존 소프트웨어 기업들은 전사적 통합 관점의 프로세스 혁신을 이루어냈다면, 이들만의 혁신 패턴은 기존의 프로세스들을 잘게 해체하여 자동화나 가치창출이 어려웠던 단위 프로세스들을 식별해 내고 데이터 기반으로 자동화, 최적화하여 새로운 가치를 제공하고 있다는 것이다. 이 연구의 기여는 통합적인 다층적 접근론의 틀의 유효성을 검증하면서 인공지능 기반 신생 기업들의 탄생과 그들의 혁신 패턴을 제시했다는 데에 있다. 한편 기업 실무적, 정부 정책적 함의를 정리하면, 데이터를 기반으로 혁신을 이끌어내기 때문에 신생 기업일지라도 데이터 관련 규제 등에 대한 제도 대응 역량이 강조되며, 정부는 관련 제도의 불확실성을 제거하고 구체화하여 예측가능하고 유연한 사업 환경을 마련할 필요가 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.