겨울철 도로 결빙으로 인한 사고는 대부분 큰 사고로 이어진다. 이는 운전자가 도로의 결빙을 사전에 자각하기 어렵기 때문이다. 본 연구에서는 AutoML과 CNN의 앙상블 모델을 이용하여 도로교통 이머징 리스크를 정확하게 탐지하는 방법을 연구한다. 비정형 데이터인 이미지를 이용한 CNN 이미지 특징 추출 기반 도로교통 이머징 리스크 분류 모델과 정형 데이터인 기상 데이터를 이용한 AutoML 기반 도로교통 이머징 리스크 분류 모델을 각각 학습시킨다. 그 후 모델들에서 도출된 확률값을 입력하여 CNN 기반 분류 모델을 보완하도록 앙상블 모델을 설계한다. 이를 통해 도로교통 이머징 리스크 분류 성능을 향상하고 더 정확하고 빠르게 운전자에게 경고하여 안전한 주행이 가능하도록 한다.
최근 COVID-19, 동학개미운동 등 투자환경의 변화로 시스템 처리 허용 수준을 상회하는 트랜잭션이 발생하고 이로 인해 전산장애가 자본시장에서 빈번하게 나타나고 있다. 자본시장 IT시스템들은 장애 영향도가 매우 큰 시스템들로서, 2020년에 예측하지 못한 큰 규모의 트랜잭션이 상당한 기간 유입되어 전산장애가 급증하였다. 다수의 기업들이 높은 수준의 IT시스템 용량계획 정책을 유지하고 있던 상황임에도 불구하고, 이를 상회하는 트랜잭션이 유입된 것은 용량계획에 대한 새로운 접근 방법이 필요함을 시사하고 있다. 이에 본 연구는 다양한 머신러닝 기법을 활용하여 자본시장 IT시스템 용량계획 모델들을 개발하고 성능을 비교 분석한다. 또한, 동학개미운동과 같이 예측하기 힘든 투자자의 행동을 반영할 수 있는 심리지수를 예측에 활용함으로써 용량계획 모델의 성능을 높인다. COVID-19 기간을 포함한 실증데이터를 이용하여 본 연구에서 개발한 용량계획 모델은 실무에서 활용 가능한 수준의 높은 성능과 안정성을 가질 수 있다. 본 연구는 기업의 비용 효율성과 IT시스템 용량 변경에 수반되는 운영상의 제약을 모두 고려한 최적의 파라미터를 제시하였는데, 이것은 자본시장 도메인에서 유용하게 사용될 수 있다. 또한, 본 연구는 투자자의 심리를 반영하는 심리지수가 IT 시스템 용량계획에 중요한 예측요인이 될 수 있는 것을 입증함으로써, 심리지수가 다양한 수요예측에 적극적으로 활용될 수 있음을 보여준다.
협업을 촉진할 수 있는 환경과 시스템을 갖추는 것은 기업경쟁력 확보에 중요한 요인으로 인식되고 있다. 협업이란 여러 사람이 협동적이고 조직적으로 일하며, 공동의 목표 혹은 가치를 추구하여 정보와 프로세스를 공유함으로써 노동 생산성을 향상시키는 상호작용을 의미한다. 협업을 촉진시키는 요인에는 비전 공유, 비전을 반영한 조직의 원칙 및 규칙, 온라인 시스템 구축, 의사소통 등이 있다. 첫째, 비전을 구체화 할수록 조직원의 적극적이고 자발적인 참여가 이루어질 수 있다. 둘째, 구성원이 수용하는 규칙이나 원칙이 단합과 좋은 성과로 이어지게 된다. 또한 능력에 맞는 업무 분담과 자기 계발을 위한 활동이 업무로 이어지고 정기적인 팀 활동을 만들어 협업 환경 및 분위기를 조성하는데 도움이 된다. 셋째, 체계적인 온라인 협업 시스템의 구축으로 효율적이고 신속한 업무가 이루어진다. 기업들은 클라우드 서비스와 소셜미디어를 활용하여 업무의 저비용과 고효율을 이룰 수 있었으며, 이때 구성원들의 적극적 활용과 참여를 유도하는 지속적 교육이 반드시 수반되어야 한다. 넷째, 기업을 알리고 조직 내 외부 사람들과 적극적으로 소통하는 활동은 기업의 이미지를 바꾸고, 기업 성과를 창출해 내는 기반이 된다. 본 연구의 목적은 글로벌 사업진출과정에 발생하는 문제해결 방안으로 산학협력 협업촉진모델을 제안하는데 있다. 이를 위하여 기업조직에서 협업이 잘 이루어지기 위한 촉진요인을 전략적 연동 모형(strategic alignment model)을 기반으로 협업을 이해하고, 스마트워크 도구를 활용하는 팀 사례분석을 통한 성공요인을 도출한다. 연구결과 체계적인 협업촉진모델을 만들기 위하여 조직 구성 단계에 맞는 역할들을 도출하였다. 첫째, 리더는 확고하고 명확한 비전을 만들어 조직구성원에게 전파하여 공감과 믿음 그리고 소속감을 가지도록 하여야 한다. 둘째, 중간관리자를 포함한 리더는 조직의 비전을 팀원간에 전파하기 위해 규칙과 원칙을 만들고, 시스템을 구축하고 효율적으로 사용할 수 있도록 관리하여야 한다. 셋째, 팀원은 기업의 비전을 내재화하여 역할에 책임을 다할 뿐만 아니라 외부로 기업을 알리는 역할에 충실해야 한다. 연구결과는 향후 실증 연구를 위한 기반을 제시할 것으로 기대된다.
최근 인구가 급격히 증가하면서 음식물의 부족 및 낭비의 심각성이 대두되고 있다. 이를 해결하기 위해 다양한 국가 및 기업에서는 소비자의 식재료 구매 패턴 연구 및 IoT 기술이 적용된 스마트 냉장고 제품개발 등의 시도를 진행 중에 있다. 그러나, 현재 판매되고 있는 스마트 냉장고들은 기존에 비해 상당한 가격대를 형성하고 있으며, 복잡한 구성으로 인한 오작동 및 파손으로 또 다른 낭비를 초래한다. 본 논문에서는 음식물 부족 및 낭비 해결과 가정 내 원활한 식재료 관리를 위한 저비용의 IoT 기반 스마트 냉장고 시스템을 제안한다. 본 시스템은 QR코드, 이미지 인식, 음성 인식을 통해 식재료를 인식하여 등록하고 이를 바탕으로 다양한 서비스를 제공할 수 있다. 이미지 인식의 정확도를 높이기 위해 우리는 딥 러닝 알고리즘을 사용한 모델을 활용하였으며 정확한 식재료 등록이 가능함을 검증하였다.
Purpose - One of the biggest problems in the e-learning distribution process is the lack of quality content and learners' discredit in e-learning content. In order to respond to the various demands of the corporate education field appropriately, it is necessary to search for directions of new e-learning models that are out of traditional e-learning contents. The purpose of this study is to identify recent trend issues related to corporate e-learning and to suggest directions for development. Research design, data, and methodology - Based on the literature review, trend issues that should be considered important in corporate e-learning were derived. Online survey was conducted to evaluate the importance-feasibility of each issue to 13 experts on e-learning and corporate education. The contents of the questionnaire are as follows: 1) recognition of importance and feasibility of trend issues to be considered important in the future corporate education field; 2) factors to be considered in developing future e-learning contents. Results - Six trends derived from a comprehensive literature review. The most important e-learning trends for corporate education field were 'mobile learning', 'micro learning', 'blended learning', 'social learning', 'adaptive learning', 'engaged learning'. As a result of evaluating the importance and feasibility of each issue, experts point out that 'mobile learning' and 'micro learning' should be actively considered for introduction and utilization at present. In addition, 'social learning' and 'blended learning' need to be actively considered in the near future. On the other hand, experts recognized that 'adaptive learning' and 'engaged learning' need to be prepared from a long-term perspective. Conclusions - There are two main reasons for this result. First, in corporate e-learning, it is important to 1) be able to update on time, 2) the connection with the workplace is important. Second, it requires realistic verification of the expected performance of the learning model. To be considered part of the future are as follows: First, the value and effectiveness of the new e-learning type should be studied. Seconds, e-learning contents should be developed through adopting SAM or Agile methodology. Through this process, we would be able to enhance the quality in e-learning content.
본 논문은 딥 러닝(Deep Learning)을 이용하여 대기오염측정망 데이터 중 특정 증상이 나타나는 이상 데이터를 탐지하는 방법을 제시한다. 기존 방법들은 일반적으로 시계열 데이터 내에서 기존과는 다른 특이한 패턴이 나타나는 데이터를 탐지하여 이상치로 분류하며, 이는 특정 증상만을 탐지하기에는 적합하지 않다. 본 논문에서는 주로 이미지의 전경 분리(Sementic Segmentation)에 사용되는 DeepLab V3+ 모델의 2차원 합성곱 신경망 구조를 1차원 구조로 변형하여 이미지 대신 여러 센서의 시계열 측정값을 입력받고 특정 증상이 나타나는 데이터를 탐지하도록 하는 방법을 제시한다. 또한, 데이터에 '조각별 집계 근사법(Piecewise Aggregate Approximation)'을 적용하여 잡음이 많은 대기오염측정망 데이터의 복잡도를 줄임으로써 성능을 높인다. 실험 결과를 통해 준수한 성능으로 이상치 탐지를 수행할 수 있음을 확인할 수 있다.
최근에 빠르게 확산되고 있는 CCTV와 같은 영상기기들은 거의 모든 공공기관, 기업, 가정 등에서 비정상적인 상황을 감시하고 대처하기 위한 수단으로 활용되고 있다. 그러나 대부분의 경우 이상상황에 대한 인식은 모니터링하고 있는 사람에 의해 수동적으로 이루어지고 있어 즉각적인 대처가 미흡하며 사후 분석용으로만 활용되고 있다. 본 논문에서는 최신 딥러닝 기술과 실시간 전송기술을 활용하여 이벤트 발생시 스마트폰으로 이상 상황을 동영상과 함께 실시간으로 전송하는 동영상 감시 시스템의 개발 결과를 제시한다. 개발된 시스템은 오픈포즈 라이브러리를 이용하여 실시간으로 동영상으로 부터 인간 객체를 스켈레톤으로 모델링한 후, 딥러닝 기술을 이용하여 인간의 행동을 자동으로 인식하도록 구현하였다. 이를 위해 Caffe 프레임워크를 개발된 오픈포즈 라이브러리를 다크넷 기반으로 재구축하여 실시간 처리 능력을 대폭 향상 시켰으며, 실험을 통해 성능을 검증하였다. 본 논문에서 소개할 시스템은 정확하고 빠른 행동인식 성능과 확장성을 갖추고 있어 다양한 용도의 동영상 감시 시스템에 활용될 수 있을 것으로 기대된다.
4차산업혁명 시대에서 공공도서관은 인공지능과 같은 외부 환경 변화에 능동적으로 대응하기 위하여 도서관 지능형서비스 추진 전략이 필요하다. 따라서 본 연구에서는 인공지능의 개념과 국내외 인공지능 관련 동향 및 정책, 사례 등의 분석 내용을 기반으로 도서관에서의 향후 인공지능 서비스 도입 및 발전 방향성에 대해 제안하였다. 현재 도서관에서는 딥러닝, 자연어처리 등 인공지능 기술 도입을 통해 자동으로 답변을 제공하는 참고정보서비스를 운영하며, 빅데이터 기반 AI 도서 추천 및 자동 도서 점검 시스템을 개발하여 업무 활용도를 높이고, 이용자 맞춤형 서비스를 제공하고 있다. 기업 및 산업 분야에서는 국내외를 막론하고, 사용자 개인 맞춤형 등을 기반으로 한 기술을 개발하여 서비스하고 있으며, 딥러닝을 사용하여 정보를 스스로 학습하여 최적의 결과를 제공하는 식의 형태로 개발하고 있다. 이에 따라 향후 도서관에서 인공지능을 활용하여, 이용자의 이용 기록을 기반으로 한 개인 맞춤형 도서 추천, 독서·문화 프로그램 추천, 도서 택배 서비스 시 자율주행 드론·자동차 등 운송수단을 통한 실시간 배송 서비스 도입 등 다양한 서비스 개발을 도모해야 한다.
본 논문에서는 기존에 전문가에 의해서 이루어지던 국가 대기오염 측정망 데이터들의 이상 탐지 작업을 인공지능을 통해 자동화하고자 심층 신경망을 이용한 이상 탐지 모델을 제안하였다. 환경과학원에서 제공받은 기상자료 데이터의 결측치 및 이상치를 분석하여 학습데이터를 생성하였으며 비지도 학습 방식의 BeatGAN 모델에 기반하여 커널 구조 변경과 합성곱 필터층 및 전치 합성곱 필터층의 추가를 통해 새로운 모델을 제안하여 이상 탐지 성능을 높이고자 하였다. 또한 제안하는 모델의 생성적 특징을 활용하여 새로운 데이터를 생성하고 이를 학습에 사용하는 재학습 알고리즘을 구현 및 적용하여 기존 BeatGAN 모델뿐 아니라 다른 비지도 학습 모델인 Iforest, One Class SVM과 비교하였을 때 제안모델의 성능이 가장 높았음을 확인할 수 있었다. 본 연구를 통해 실제 산업현장에서 센서의 이상, 점검 등의 여러 요인으로 인해 학습 데이터가 부족한 상황에서 추가적인 비용없이 과적합을 피하며 제안하는 모델의 이상탐지 성능을 올릴 수 있는 방법을 제시할 수 있었다.
인터넷 기술의 발전으로 인해 다양한 미디어가 등장하면서 광고주들은 기업의 광고 전략에 적합한 미디어를 선택하는데 어려움을 경험하고 있다. 전통적인 광고 마케팅 전략을 바탕으로 광고 미디어를 선택하면 소비자의 상황 정보를 효과적으로 반영하는데 어려움이 존재한다. 이러한 상황에서 소비자의 과거 데이터를 분석하여 소비자가 필요하거나 관심 있는 정보를 바탕으로 광고주에게 맞춤형 미디어를 제공하는 추천 시스템이 필요하다. 전통적인 추천 시스템은 정량적 선호도 정보를 기반으로 추천 서비스를 제공하기 때문에 다양한 상황 정보를 반영하기 어려운 문제점이 존재한다. 본 연구에서는 딥러닝을 이용하여 소비자의 미디어 시청 시간, 거주 지역, 나이, 성별 등 상황 정보를 고려하여 광고주에게 맞춤형 미디어를 추천하는 방법론을 제안한다. 본 연구는 한국방송광고진흥공사에서 제공하는 소비자행태조사 데이터를 사용하여 추천 시스템을 구축하였다. 또한, 기존 연구에서 널리 사용되는 여러 벤치마크 모델과 비교하여 추천 성능을 검증하였다. 실험 결과, 본 연구에서 제안하는 소비자의 상황 정보를 반영한 추천 모델이 기존의 벤치마크 모델보다 높은 정확성을 나타내는 것을 확인하였다. 이 연구는 향후 광고주들이 소비자의 여러 상황 정보를 바탕으로 맞춤형 미디어 선택할 때 효과적인 의사결정을 내릴 수 있도록 도움을 주는데 기여를 할 수 있을 것으로 기대한다
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.