• Title/Summary/Keyword: 기업 연구개발 투자

Search Result 767, Processing Time 0.028 seconds

Fifty years of economic geography in Korea:research trends and issues (한국경제지리학 반세기:연구성과와 과제)

  • ;Park, Sam Ock
    • Journal of the Korean Geographical Society
    • /
    • v.31 no.2
    • /
    • pp.160-197
    • /
    • 1996
  • The purpose of this study is to review research trends and issues of economic geography in Korea for the last fifty years by sub-fields of agricultural geography, industrial geography, commercial and service geography, and transportation geography. Research in Korean economic geography has progressed significantly in terms of the scope and the number of papers published during the last a half a century. Agricultural geography was a leading field of economic geography in Korea before mid-1970s. Since the mid-1970s, however, agricultural geography has turned over the leading role in economic geography to industrial geography. Classification and structure of agricultural region has been the most popular research theme in Korea, even though diverse topics has been dealt in the research of agricultulal geography in Korea during the last fifty years. In recent years, emphasis is given to study on the dynamics of agricultural region and regional differentiation of part-time farming. It is suggested that the future issues of research in agricultural geography in Korea are agricultural restructuring and changes in agricultural space under the WTO system, changes in rural area and agricultural region with the progress of informatization, changes in agricultural structures and rural society by the increase of part-time farming, governments agricultulal policy and its impacts, competitive advantages of Korean agricultulal products, and environmental impacts of agricultural restructuring. Research in industrial geography has remarkably progressed since the 1980s. Locational changes, regional industrial structure and formation of industrial region were the major topics of interest in the research of industrial geography in Korea before 1980. Since the early 1980s, in addition to the topics which were interested in before 1980, changes of industrial organization and industrial location, changes of production systems and industrial space development of high technology industries and science parks, industrial restructuring and regional economy, foreign direct investments, industrial linkages and industrial districts, and industrial policy and regional development have been the major research themes of industrial geography in Korea. Considerable number of papers has been published both in Korean journals and in foreign journals during this period. Considering global changes in the organization of industrial space, future research should be more focused on firms strategy for regaining competitive advantages, local and global perspectives of industry, industry and environmental changes, in addition to the topics which have been dealt in recent years. Research in commercial and service geography and transportation geography was negligible in Korea before the late 1970s. These two sub-fields in economic geography have begun to develop since 1980s. Periodic markets, structure of commercial area, and distribution of products were the major topics of interest in the 1980s in the commercial and service geography in Korea. In the 1990s, however reserch in producer services has been active with growth of producer services in Korean economy. It is suggested that regional changes with progress of informatization and technology, changes of international trade and regional changes, development of efficient distribution system, role of producer services in regional development, and network of producer services are the major issues to be studied in the future in the field of commercial and service geography in Korea. Commuting, distribution of products, and transportation networks have been the major topics of research in transportation geography in Korea. Diverse quantitative techniques have been applied in the most of the researches in transportation geography. It is required that future studies in transportation geography should also focus on societal and behavioral issues, policy issues regional impacts of new transportation facilities, an analysis of transportation system at the global or international level. Since the 1980s economic geography in Korea has considerably progressed with publication of papers and books. The progress can be regarded as successful in quantitative aspect, but not in quantitative aspects. For the development of Korean economic geography in both quantitative and qualitative aspects, it is necessary to promote international collaborative researches and interdisciplinary cooperations. Attention should also be given to the research on changes in competitive advantages and economic restructuring, changes of economic space with the development of high technology and the progress of informatization. economic development and culture. and foreign regional studies.

  • PDF

Home Meal Replacement Consumption Status and Product Development Needs according to Dietary Lifestyle of Hong Kong Consumers (홍콩 소비자의 식생활 라이프스타일에 따른 HMR 소비실태와 제품개발 요구도)

  • Paik, Eun-Jin;Lee, Hyun-Jun;Hong, Wan-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.7
    • /
    • pp.876-885
    • /
    • 2017
  • This study aimed to identify the characteristics of Home Meal Replacement (HMR) product purchases and the need for HMR product development for Hong Kong consumers in order to suggest market segmentation strategies according to consumers' dietary lifestyle. For this, an online survey was conducted on a panel of 521 Hong Kong consumers with HMR purchase experience registered at a specialized organization. Data analysis was performed using SPSS (ver. 23.0). HMR purchase characteristics of Hong Kong consumers according to dietary lifestyle showed significant differences in all items, including 'number of purchases', 'purchase location', 'cost of single purchase', and 'reason for purchase'. According to dietary lifestyle, participants were divided into three clusters: 'High interest', 'normal interest', and 'low interest'. In the case of 'high interest in dietary life group', 'low-sodium food' was the most common, followed by 'heating food', 'low sugar food', and 'low calorie food'. In the case of 'moderate interest in dietary life group', 'low-sodium food' was the most common, followed by 'low sugar food', 'low calorie food', and 'nutritious meal'. In the case of 'low interest in dietary life group', 'low sugar food' was the most common, followed by 'low-sodium food', 'various new menu', and 'easy-to-carry dehydrated food'. For the 'high interest' group, the highest proportion of consumers were male in between the ages of 20 to 29, married, and worked in an office job. The 'high interest' consumers also showed a tendency to pay '15,000 to 20,000 KRW' per single purchase. The 'normal interest' group consisted of an even proportion of male and female consumers, with the most common age range being from 30 to 39 years, and most were married. These consumers preferred to spend 'less than 10,000 KRW' or '10,000 KRW to 15,000 KRW' per single purchase, which is in the lower price range for HMR purchases. The 'low interest in dietary life group' had more females gender-wise, were unmarried, and worked in an office job, For a single purchase, the 'low interest' group chose to pay less than 10,000 KRW, which is relatively lower than the other two clusters. The results of this study can be used as baseline data for building marketing strategies for HMR product development. It can also provide basic data and directions for new HMR export products that reflect consumer needs in order to create a market segmentation strategy for industrial applications.

Comparative Study on Perceived Effectiveness of Suncheon Bay International Garden Expo - 2013 and 2023 with a Focus on Visitors - (순천만국제정원박람회 개최효과 인지 비교 연구 - 2013, 2023년 방문객을 중심으로 -)

  • Kim, Tai-Won;Kim, Gunwoo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.6
    • /
    • pp.1-11
    • /
    • 2023
  • By comparing and analyzing the effects of the 2013 Suncheon Bay International Garden Expo and the 2023 Suncheon Bay International Garden Expo, designated as Korea's first national garden, this study aims to present basic data for the future operation direction and sustainability strategy. First, in both fairs, satisfaction throughout the event was high, 4.0 or higher. In particular, the satisfaction level of the 2023 Suncheon Bay International Garden Expo was higher than that of the 2013 Suncheon Bay International Garden Expo. As the longest international event held since the COVID-19 pandemic, it reflected the citizens' demand for healing and recharging in natural spaces. Second, as a result of comparing the types of perceptions that affected satisfaction, it was found that economic, environmental, and ecological types commonly affected satisfaction at the 2013 and 2023 Suncheon Bay International Garden Expo. The 2013 Suncheon Bay International Garden Expo established the brand value as an "ecological city" by creating a garden in the city center along with an ecological resource called Suncheon Bay. In addition, the 2023 Suncheon Bay International Garden Expo expanded the scope of the garden to the entire city center. It also attempted to create a city where humans and nature coexist by realizing values, such as responding to climate change and carbon neutrality. In other words, one of the ways to secure urban competitiveness is to attract corporate investment and tourists and build a differentiated brand in Suncheon by promoting the 2023 fair based on the potential ecological values of the region after the 2013 Suncheon Bay International Garden Expo. Therefore, if the Suncheon Bay International Garden Expo continues to develop environmental and ecological content and programs in line with changes in society and tries to establish itself in citizens' perception through cooperation with local governments and residents, it will be able to establish its identity and brand power.

The Innovation Ecosystem and Implications of the Netherlands. (네덜란드의 혁신클러스터정책과 시사점)

  • Kim, Young-woo
    • Journal of Venture Innovation
    • /
    • v.5 no.1
    • /
    • pp.107-127
    • /
    • 2022
  • Global challenges such as the corona pandemic, climate change and the war-on-tech ensure that the demand who the technologies of the future develops and monitors prominently for will be on the agenda. Development of, and applications in, agrifood, biotech, high-tech, medtech, quantum, AI and photonics are the basis of the future earning capacity of the Netherlands and contribute to solving societal challenges, close to home and worldwide. To be like the Netherlands and Europe a strategic position in the to obtain knowledge and innovation chain, and with it our autonomy in relation to from China and the United States insurance, clear choices are needed. Brainport Eindhoven: Building on Philips' knowledge base, there is create an innovative ecosystem where more than 7,000 companies in the High-tech Systems & Materials (HTSM) collaborate on new technologies, future earning potential and international value chains. Nearly 20,000 private R&D employees work in 5 regional high-end campuses and for companies such as ASML, NXP, DAF, Prodrive Technologies, Lightyear and many others. Brainport Eindhoven has a internationally leading position in the field of system engineering, semicon, micro and nanoelectronics, AI, integrated photonics and additive manufacturing. What is being developed in Brainport leads to the growth of the manufacturing industry far beyond the region thanks to chain cooperation between large companies and SMEs. South-Holland: The South Holland ecosystem includes companies as KPN, Shell, DSM and Janssen Pharmaceutical, large and innovative SMEs and leading educational and knowledge institutions that have more than Invest €3.3 billion in R&D. Bearing Cores are formed by the top campuses of Leiden and Delft, good for more than 40,000 innovative jobs, the port-industrial complex (logistics & energy), the manufacturing industry cluster on maritime and aerospace and the horticultural cluster in the Westland. South Holland trains thematically key technologies such as biotech, quantum technology and AI. Twente: The green, technological top region of Twente has a long tradition of collaboration in triple helix bandage. Technological innovations from Twente offer worldwide solutions for the large social issues. Work is in progress to key technologies such as AI, photonics, robotics and nanotechnology. New technology is applied in sectors such as medtech, the manufacturing industry, agriculture and circular value chains, such as textiles and construction. Being for Twente start-ups and SMEs of great importance to the jobs of tomorrow. Connect these companies technology from Twente with knowledge regions and OEMs, at home and abroad. Wageningen in FoodValley: Wageningen Campus is a global agri-food magnet for startups and corporates by the national accelerator StartLife and student incubator StartHub. FoodvalleyNL also connects with an ambitious 2030 programme, the versatile ecosystem regional, national and international - including through the WEF European food innovation hub. The campus offers guests and the 3,000 private R&D put in an interesting programming science, innovation and social dialogue around the challenges in agro production, food processing, biobased/circular, climate and biodiversity. The Netherlands succeeded in industrializing in logistics countries, but it is striving for sustainable growth by creating an innovative ecosystem through a regional industry-academic research model. In particular, the Brainport Cluster, centered on the high-tech industry, pursues regional innovation and is opening a new horizon for existing industry-academic models. Brainport is a state-of-the-art forward base that leads the innovation ecosystem of Dutch manufacturing. The history of ports in the Netherlands is transforming from a logistics-oriented port symbolized by Rotterdam into a "port of digital knowledge" centered on Brainport. On the basis of this, it can be seen that the industry-academic cluster model linking the central government's vision to create an innovative ecosystem and the specialized industry in the region serves as the biggest stepping stone. The Netherlands' innovation policy is expected to be more faithful to its role as Europe's "digital gateway" through regional development centered on the innovation cluster ecosystem and investment in job creation and new industries.

A Study on Knowledge Entity Extraction Method for Individual Stocks Based on Neural Tensor Network (뉴럴 텐서 네트워크 기반 주식 개별종목 지식개체명 추출 방법에 관한 연구)

  • Yang, Yunseok;Lee, Hyun Jun;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.25-38
    • /
    • 2019
  • Selecting high-quality information that meets the interests and needs of users among the overflowing contents is becoming more important as the generation continues. In the flood of information, efforts to reflect the intention of the user in the search result better are being tried, rather than recognizing the information request as a simple string. Also, large IT companies such as Google and Microsoft focus on developing knowledge-based technologies including search engines which provide users with satisfaction and convenience. Especially, the finance is one of the fields expected to have the usefulness and potential of text data analysis because it's constantly generating new information, and the earlier the information is, the more valuable it is. Automatic knowledge extraction can be effective in areas where information flow is vast, such as financial sector, and new information continues to emerge. However, there are several practical difficulties faced by automatic knowledge extraction. First, there are difficulties in making corpus from different fields with same algorithm, and it is difficult to extract good quality triple. Second, it becomes more difficult to produce labeled text data by people if the extent and scope of knowledge increases and patterns are constantly updated. Third, performance evaluation is difficult due to the characteristics of unsupervised learning. Finally, problem definition for automatic knowledge extraction is not easy because of ambiguous conceptual characteristics of knowledge. So, in order to overcome limits described above and improve the semantic performance of stock-related information searching, this study attempts to extract the knowledge entity by using neural tensor network and evaluate the performance of them. Different from other references, the purpose of this study is to extract knowledge entity which is related to individual stock items. Various but relatively simple data processing methods are applied in the presented model to solve the problems of previous researches and to enhance the effectiveness of the model. From these processes, this study has the following three significances. First, A practical and simple automatic knowledge extraction method that can be applied. Second, the possibility of performance evaluation is presented through simple problem definition. Finally, the expressiveness of the knowledge increased by generating input data on a sentence basis without complex morphological analysis. The results of the empirical analysis and objective performance evaluation method are also presented. The empirical study to confirm the usefulness of the presented model, experts' reports about individual 30 stocks which are top 30 items based on frequency of publication from May 30, 2017 to May 21, 2018 are used. the total number of reports are 5,600, and 3,074 reports, which accounts about 55% of the total, is designated as a training set, and other 45% of reports are designated as a testing set. Before constructing the model, all reports of a training set are classified by stocks, and their entities are extracted using named entity recognition tool which is the KKMA. for each stocks, top 100 entities based on appearance frequency are selected, and become vectorized using one-hot encoding. After that, by using neural tensor network, the same number of score functions as stocks are trained. Thus, if a new entity from a testing set appears, we can try to calculate the score by putting it into every single score function, and the stock of the function with the highest score is predicted as the related item with the entity. To evaluate presented models, we confirm prediction power and determining whether the score functions are well constructed by calculating hit ratio for all reports of testing set. As a result of the empirical study, the presented model shows 69.3% hit accuracy for testing set which consists of 2,526 reports. this hit ratio is meaningfully high despite of some constraints for conducting research. Looking at the prediction performance of the model for each stocks, only 3 stocks, which are LG ELECTRONICS, KiaMtr, and Mando, show extremely low performance than average. this result maybe due to the interference effect with other similar items and generation of new knowledge. In this paper, we propose a methodology to find out key entities or their combinations which are necessary to search related information in accordance with the user's investment intention. Graph data is generated by using only the named entity recognition tool and applied to the neural tensor network without learning corpus or word vectors for the field. From the empirical test, we confirm the effectiveness of the presented model as described above. However, there also exist some limits and things to complement. Representatively, the phenomenon that the model performance is especially bad for only some stocks shows the need for further researches. Finally, through the empirical study, we confirmed that the learning method presented in this study can be used for the purpose of matching the new text information semantically with the related stocks.

Suggestion of Urban Regeneration Type Recommendation System Based on Local Characteristics Using Text Mining (텍스트 마이닝을 활용한 지역 특성 기반 도시재생 유형 추천 시스템 제안)

  • Kim, Ikjun;Lee, Junho;Kim, Hyomin;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.149-169
    • /
    • 2020
  • "The Urban Renewal New Deal project", one of the government's major national projects, is about developing underdeveloped areas by investing 50 trillion won in 100 locations on the first year and 500 over the next four years. This project is drawing keen attention from the media and local governments. However, the project model which fails to reflect the original characteristics of the area as it divides project area into five categories: "Our Neighborhood Restoration, Housing Maintenance Support Type, General Neighborhood Type, Central Urban Type, and Economic Base Type," According to keywords for successful urban regeneration in Korea, "resident participation," "regional specialization," "ministerial cooperation" and "public-private cooperation", when local governments propose urban regeneration projects to the government, they can see that it is most important to accurately understand the characteristics of the city and push ahead with the projects in a way that suits the characteristics of the city with the help of local residents and private companies. In addition, considering the gentrification problem, which is one of the side effects of urban regeneration projects, it is important to select and implement urban regeneration types suitable for the characteristics of the area. In order to supplement the limitations of the 'Urban Regeneration New Deal Project' methodology, this study aims to propose a system that recommends urban regeneration types suitable for urban regeneration sites by utilizing various machine learning algorithms, referring to the urban regeneration types of the '2025 Seoul Metropolitan Government Urban Regeneration Strategy Plan' promoted based on regional characteristics. There are four types of urban regeneration in Seoul: "Low-use Low-Level Development, Abandonment, Deteriorated Housing, and Specialization of Historical and Cultural Resources" (Shon and Park, 2017). In order to identify regional characteristics, approximately 100,000 text data were collected for 22 regions where the project was carried out for a total of four types of urban regeneration. Using the collected data, we drew key keywords for each region according to the type of urban regeneration and conducted topic modeling to explore whether there were differences between types. As a result, it was confirmed that a number of topics related to real estate and economy appeared in old residential areas, and in the case of declining and underdeveloped areas, topics reflecting the characteristics of areas where industrial activities were active in the past appeared. In the case of the historical and cultural resource area, since it is an area that contains traces of the past, many keywords related to the government appeared. Therefore, it was possible to confirm political topics and cultural topics resulting from various events. Finally, in the case of low-use and under-developed areas, many topics on real estate and accessibility are emerging, so accessibility is good. It mainly had the characteristics of a region where development is planned or is likely to be developed. Furthermore, a model was implemented that proposes urban regeneration types tailored to regional characteristics for regions other than Seoul. Machine learning technology was used to implement the model, and training data and test data were randomly extracted at an 8:2 ratio and used. In order to compare the performance between various models, the input variables are set in two ways: Count Vector and TF-IDF Vector, and as Classifier, there are 5 types of SVM (Support Vector Machine), Decision Tree, Random Forest, Logistic Regression, and Gradient Boosting. By applying it, performance comparison for a total of 10 models was conducted. The model with the highest performance was the Gradient Boosting method using TF-IDF Vector input data, and the accuracy was 97%. Therefore, the recommendation system proposed in this study is expected to recommend urban regeneration types based on the regional characteristics of new business sites in the process of carrying out urban regeneration projects."

Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms (M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발)

  • Yang, Hoonseok;Kim, Sunwoong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.63-83
    • /
    • 2019
  • Investors prefer to look for trading points based on the graph shown in the chart rather than complex analysis, such as corporate intrinsic value analysis and technical auxiliary index analysis. However, the pattern analysis technique is difficult and computerized less than the needs of users. In recent years, there have been many cases of studying stock price patterns using various machine learning techniques including neural networks in the field of artificial intelligence(AI). In particular, the development of IT technology has made it easier to analyze a huge number of chart data to find patterns that can predict stock prices. Although short-term forecasting power of prices has increased in terms of performance so far, long-term forecasting power is limited and is used in short-term trading rather than long-term investment. Other studies have focused on mechanically and accurately identifying patterns that were not recognized by past technology, but it can be vulnerable in practical areas because it is a separate matter whether the patterns found are suitable for trading. When they find a meaningful pattern, they find a point that matches the pattern. They then measure their performance after n days, assuming that they have bought at that point in time. Since this approach is to calculate virtual revenues, there can be many disparities with reality. The existing research method tries to find a pattern with stock price prediction power, but this study proposes to define the patterns first and to trade when the pattern with high success probability appears. The M & W wave pattern published by Merrill(1980) is simple because we can distinguish it by five turning points. Despite the report that some patterns have price predictability, there were no performance reports used in the actual market. The simplicity of a pattern consisting of five turning points has the advantage of reducing the cost of increasing pattern recognition accuracy. In this study, 16 patterns of up conversion and 16 patterns of down conversion are reclassified into ten groups so that they can be easily implemented by the system. Only one pattern with high success rate per group is selected for trading. Patterns that had a high probability of success in the past are likely to succeed in the future. So we trade when such a pattern occurs. It is a real situation because it is measured assuming that both the buy and sell have been executed. We tested three ways to calculate the turning point. The first method, the minimum change rate zig-zag method, removes price movements below a certain percentage and calculates the vertex. In the second method, high-low line zig-zag, the high price that meets the n-day high price line is calculated at the peak price, and the low price that meets the n-day low price line is calculated at the valley price. In the third method, the swing wave method, the high price in the center higher than n high prices on the left and right is calculated as the peak price. If the central low price is lower than the n low price on the left and right, it is calculated as valley price. The swing wave method was superior to the other methods in the test results. It is interpreted that the transaction after checking the completion of the pattern is more effective than the transaction in the unfinished state of the pattern. Genetic algorithms(GA) were the most suitable solution, although it was virtually impossible to find patterns with high success rates because the number of cases was too large in this simulation. We also performed the simulation using the Walk-forward Analysis(WFA) method, which tests the test section and the application section separately. So we were able to respond appropriately to market changes. In this study, we optimize the stock portfolio because there is a risk of over-optimized if we implement the variable optimality for each individual stock. Therefore, we selected the number of constituent stocks as 20 to increase the effect of diversified investment while avoiding optimization. We tested the KOSPI market by dividing it into six categories. In the results, the portfolio of small cap stock was the most successful and the high vol stock portfolio was the second best. This shows that patterns need to have some price volatility in order for patterns to be shaped, but volatility is not the best.