• 제목/요약/키워드: 기어 가공도

검색결과 214건 처리시간 0.023초

Analysis on Cutting Force of Tool in Gear Chamfering Process (기어 챔퍼링 공정에서 공구의 절삭력 해석)

  • Choi, Boo-Rim;Hwang, Kwang-Bok;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제12권1호
    • /
    • pp.52-62
    • /
    • 2013
  • In order to obtain the relation between the cutting force and the process parameters in the chamfering process for the gear of a gear shaft, analysis of the process was performed with a simplified model instead of considering the whole actual 3-dimensional cutting situation produced between cutting tool and gear. The model divided the actual situation into the accumulation of hundreds of 2-dimensional layers with a small thickness in the direction of the height of gear and derived cutting force at a cutting position by accumulating each cutting force calculated in a layer. With proposed method to analyze the cutting forces in the chamfering process, it was revealed that the cutting position and size were exactly searched to calculate the cutting force in each layer. The total cutting force was the highest in the corner where the cutter encountered the gear first during the relative motion between them. The cutting forces were changed in proportion to the cutting parameters such as feed rate and trajectory.

Design Modification of Marine Turning Gear Based on Spur Planetary Gear (스퍼 유성감속기 기반 선박용 터닝기어의 설계 변경)

  • Kim, Kun-Woo;Lee, Jae-Wook;Jang, Jin-Seok;Oh, Joo-Young;Hong, Jong-Hae;Lee, Kang-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제18권12호
    • /
    • pp.7-14
    • /
    • 2019
  • A marine turning gear controls the position of the piston-crank mechanism by rotating the flywheel of the marine engine at a low speed, which is the main auxiliary machine that enables the disassembly and maintenance of the engine. In this study, the safety factor for surface durability and tooth bending strength was improved by the design modification of the marine turning gear based on the spur planetary gear. Angular velocity, torque, and efficiency of the turning gear were measured using a reliability evaluation tester, and a multibody dynamics model for analysis corresponding to the test results was developed. Finally, it was confirmed that the design improvements improved the tooth surface damage of the sun gear in the 3rd reduction stage.

A Study on the Fabrication and Performance Evaluation of Worm Gear Reducer (웜기어 감속기 제작 및 성능평가에 관한 연구)

  • Lee, Dong Gyu;Zhen, Qin;Jeon, Min Hyong;Kim, Lae Sung;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제17권1호
    • /
    • pp.1-7
    • /
    • 2018
  • We aimed to develop a high quality 3.5 ton class swing reducer by studying the efficiency improvement of the reducer through the optimum design and performance evaluation of the assembled, high efficiency, lightweight 3.5 ton swing reducer. Based on the optimal design of the worm and worm wheel, the optimal manufacturing method of the worm wheel, the optimized casing design, and the optimum design of the output pinion, Respectively. Therefore, in this paper, to improve the efficiency of the worm gear reducer system, we will develop the manufacturing technology and verify the mass production by combining the manufacturing process design, processing and assembling technology according to the optimization design. We have conducted research to realize mass production by product verification such as product efficiency, reliability and durability according to optimal design of worm gear reducer.

Development of gear type grease lubricator by rapid prototyping (쾌속조형기에 의한 기어식 주유장치의 개발)

  • Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제13권6호
    • /
    • pp.46-53
    • /
    • 2014
  • An automatic grease lubricator provides an adequate amount of fresh grease constantly to any type of rotating machine to minimize friction heat and reduce friction loss. This study seeks to develop an automatic grease lubricator by means of rapid prototyping with a gear-driven mechanism and a controlled operation time. The ultimate design is to lubricate an adequate amount of grease by a simple dip-switch clicking mechanism according to an advanced set cycle. The backlash of the gear was minimized to increase the power, and to increase the power of the mechanism, the binding frequency and the thickness of the coil were changed. To control the rotation cycles of the main shaft according to certain set numbers, different resistances and chips were used in the design of the circuit which controls the electrical signals via a pulse. A digital mock-up was analyzed and the rapid prototyping (RP) trial products were tested with a PCB circuit and grease. An evaluation of the outlet capacity of RP trial products was conducted, as the friction caused by the outlet on the wall surface was an important factor in the operation of the equipment. Finally, a finishing process was applied to decrease the roughness of a surface to a comparable level to test the performance of the product.

A Study on Optimum Design of Worm Gear Reducer Output Pinion (웜기어 감속기 출력 피니언의 최적설계에 관한 연구)

  • Lee, Dong Gyu;Zhen, Qin;Kim, Lae Sung;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제16권6호
    • /
    • pp.153-158
    • /
    • 2017
  • Reducer is a device to transmit and change torque and speed from drive shaft to driven shaft with excellent transmission efficiency, and it is widely used in many areas today. Reduction gear consists of two axes, gear, bearing supporting axes, and housing. The simplest method to transmit rotation or power to multiple axes is to attach circular plates to two axes and contact each other. However, in this case, if increasing number of rotations or if contact pressure is small, because of slipping, it cannot transmit power. For problems for the current reducer case, it is heavy and its assembling and repair is difficult. In addition, there are few studies about manufacturing and performance testing of worm gear reducer, causing lack of the foundation to improve the product competition and the performance.

A Study on the Dynamic Analysis of Recliner Gear for Vehicle Power Seats (차량용 시트 리클라이너 기어의 동적 해석)

  • Kim, Sung-Yuk;Lee, Jung-Bin;Kim, Key-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제16권6호
    • /
    • pp.15-20
    • /
    • 2017
  • This study analyzed the load change of the gear generated by the operation of the vehicle recliner through Finite Element Analysis. The basic model of the recliner used was a commercial product, and the effect of the seat frame was excluded. The load conditions applied to the recliner were set considering gravity, the mass of the seat's back frame, and the weight of a person. The operating mode was set to move the seat back from the vertical to the reclined position. As a result, it was found that the tooth bending amount of the gear rim and wheel increased from the cam rotation angle of 450 degrees, and a change in the contact ratio occurred. Furthermore, excessive torque fluctuations occurred in the ranges of 390 to 450 and 750 to 710 degrees. It was found that this occurred in the region of about 30 degrees before and after the point where the x-axis direction load is larger than the y-direction load. From this torque fluctuation it was determined to likely to cause chattering noise.

Study on Laser Welding for Differential Gear & Case for Filler Wire (용가재를 사용한 디퍼렌셜 기어와 케이스 레이저 용접 연구)

  • Cho, Joon-Kwon;Chang, In-Sung;Jeong, Chang-Ho;Lim, Chae-Won
    • Laser Solutions
    • /
    • 제14권4호
    • /
    • pp.1-8
    • /
    • 2011
  • This study is about laser welded joints in order to replace the traditional screw connection of a differential gear and its case in the differential gear assembly. Screws are usually used to join these parts. But the screws take up weight and space. So we needed to improve the joining method. In the welding of a differential gear and its case, the quality is much harder to control, because the high carbon contents of the two components results in cold cracks. But a new method that adds wire allows these materials to be joined. Additionally, more distortions generally occurs in the welded joints than in screws. We tried to prove that laser welding is an available method for joining these parts through the measurement and various tests.

  • PDF

Performance Test for a Multi-stage Planetary Gear Module in a Hydraulic Winch (유압 윈치용 다단 유성기어 감속기에 대한 성능시험)

  • Park, Kyu Tae;Yoo, Young Rak;Lim, Jong-Hak;Kim, Sung-Hoon;Lee, Ho Seong;Song, Chul Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제19권10호
    • /
    • pp.31-35
    • /
    • 2020
  • Hydraulic winches for transportation and logistics in the shipbuilding and marine plant fields require multi-stage planetary gear modules with high gear ratios. Due to environmental conditions in the ship, durability is crucial. Further, we are currently relying on foreign products. The development of domestic technology will reduce cost, save time, and improve the export market. Thus, we developed a multi-stage planetary gear module for a hydraulic winch and evaluated its performance through several tests of the hydraulic brake torque, maximum torque, and load endurance.

Evaluation of Bending Fatigue Testing of Austempered Ductile Iron Spur Gears (오스템퍼링 구상흑연주철 평기어의 굽힘피로시험평가에 관한 연구)

  • Lv, Jian Hua;Zhou, Rui;Xu, Yang;Qin, Zhen;Zhang, Qi;Lyu, Sungki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제19권12호
    • /
    • pp.1-7
    • /
    • 2020
  • An experimental evaluation of bending fatigue strength for austempered ductile iron (ADI) spur gears was performed using a Zwick fatigue tester. The gear material was manufactured using vertical continuous casting, resulting in the radius of the graphite grains being smaller. The stress-number of cycles curve (S-N curve) for the bending fatigue strength of the ADI spur gears thus manufactured, without any specific surface treatments, was obtained using post-processing software. It was observed that when the reliability was 50%, the allowable root stress was 610 MPa. was calculated using an analytical method as well as the finite element method, and the difference between the values calculated using the two methods is only 7%. This study provides a reliable basis to rate the reliability design of small gearboxes in automation in the future.

Development of Marine Turning Gear Based on Helical Planetary Reducer (헬리컬 유성감속기 기반 선박용 터닝기어 개발)

  • Kim, Kun-Woo;Lee, Jae-Wook;Jang, Jin-Seok;Choi, Chang-Young;Hong, Jong-Hae;Lee, Kang-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제19권10호
    • /
    • pp.36-43
    • /
    • 2020
  • A marine turning gear is the main auxiliary machine that enables the disassembly of and maintenance on the main engines. In this study, a marine turning gear based on a helical planetary reducer was developed through analysis of a marine turning gear based on a spur planetary reducer. Nonlinear numerical analysis was performed to determine the ideal contact ratio between the sun gear and the idle gear. Based on this, the surface durability, tooth bending strength, and contact ratio were calculated. In addition, the helix direction was selected to utilize the existing bearings. Gears were manufactured based on the helical gear design values, and the turning gear was evaluated using the FTA standards of MAN Co. Ltd. As a result, a lifetime of 3,000 to 5,000 hours was verified, the maximum torque measured was 105kNm, and the efficiency was measured to be 87.4%.