Journal of the Korea Institute of Information and Communication Engineering
/
v.5
no.1
/
pp.73-79
/
2001
IP Switching is a new routing technology Proposed to improve the Performance of IP routers. Flow classification is one of the key issues in IP Switching. To achieve better performance, flow classification should be matched to the varying IP traffic and an IP switch should make use of its hardware switching resources as fully as possible. This paper proposes an dynamic flow classification method for IP Switching. By dynamically adjusting the values of its control parameters in response to the present usage of the hardware switching resources, this dynamic method can efficiently match the varying IP traffic and thus improve the performance of an IP switch.
최근 삶의 수준의 향상과 의학 기술의 발전으로 노인 인구가 증가하고 있다. 하지만 늘어나는 노인 인구에 비례하여 신체적 노화로 거동이 어려운 노인의 수 또한 증가하는 추세이다. 실제로 많은 노인 인구가 거동이 불편해 정상적인 생활을 하지 못하고 있기 때문에 보행 시 적절한 힘을 보조해 줄 수 있는 보행 보조 장치의 개발이 필요하다. 이 같은 보행 보조 장치를 개발함에 있어 보행자의 보행 패턴이 고려된다면 보행자의 걸음걸이에 맞춰 자연스럽게 힘을 보조해 줄 수 있기 때문에 보행자의 보행 단계 분류에 관한 연구가 선행되어야 한다. 그래서 본 논문에서는 하지 근전도 신호를 이용해 보행 단계를 구분하는 방법을 제안하고자 한다. 근전도 신호는 근육이 움직일 때 발생하는 아주 작은 전기적인 신호이다. 근전도 신호는 작은 잡음에도 민감하며, 전극을 부착하는 근육의 위치에 따라서도 값의 차이가 크기 때문에 근전도 신호의 획득 및 처리 방법이 중요하다. 위를 위해 피실험자 별 근육의 위치와 보행 속도를 달리하여 근전도 신호를 획득하고 획득한 신호로부터 여러 특징 값을 추출한다. 그리고 새로운 데이터에 대해 적응성이 강하고 시간에 따라 변하는 근전도 신호의 특성을 잘 반영할 수 있으며 각 집합(class)의 비선형 분리가 가능한 퍼지 최대-최소 신경망(Fuzzy Min-Max Neural Network: FMMNN)을 이용해 보행 단계를 분류해 본다. 실험 결과를 통해 제안한 방법의 타당성을 검증해 보고 보행자, 보행속도, 근전도 측정을 위한 근육의 위치가 보행 패턴 분류에 미치는 영향을 알아본다.
Annual Conference on Human and Language Technology
/
2014.10a
/
pp.122-126
/
2014
감성은 콘텐츠 구매과정에서 결정적인 요소로 작용하며, 영화 콘텐츠의 탐색/소비 과정에서도 콘텐츠 소비의 새로운 기준이다. 그러므로 본 연구에서는 콘텐츠의 내용과 감성을 반영하기 위한 감성분류체계를 제안하였다. 제안한 감성분류체계를 기반으로 사용자의 취향과 감성에 기반하여 콘텐츠를 분류/추천하여 개인화된 편성을 제공하는 것을 "감성 큐레이션"이라 정의하고, 이를 위한 감성기반 큐레이션 방법론을 기술하고 실험을 통해 추천 효과를 입증하였다. 큐레이션은 기존의 개인화 추천과 달리 고객 취향뿐만이 아닌, 신선함, 다양성을 제공할 수 있어야 하며, 상용 큐레이션 서비스에서는 실제 시청으로 연결되는 비율이 중요하다. 본 연구에서는 큐레이션 성능 평가를 위해 성향인지도, 신선도, 다양성에 기반한 만족도 설문조사 방법과 함께, 콘텐츠의 전체 시청률 대비 큐레이션을 통해 추천되어 증가된 시청률의 확대 비율인 Lift score 라는 새로운 평가 방법을 제안하여 그 효용성을 증명하였다.
Data mining means a process of nontrivial extraction of hidden knowledge or potentially useful information from data in large databases. Data mining algorithm is a multi-disciplinary field of research; machine learning, statistics, and computer science all make a contribution. Different classification schemes can be used to categorize data mining methods based on the kinds of tasks to be implemented and the kinds of application classes to be utilized, and classification has been identified as an important task in the emerging field of data mining. Since classification is the basic element of human's way of thinking, it is a well-studied problem in a wide varietyof application. In this paper, we propose a classifier system based on genetic algorithm with robust property, and the proposed system is evaluated by applying it to nDmC problem related to classification task in data mining.
Proceedings of the Korean Information Science Society Conference
/
2011.06c
/
pp.198-201
/
2011
본 연구는 현재 널리 사용되고 있는 소셜네트워크 속에서 일반 사용자들이 의료 도메인의 전문가들과 쉽게 질문과 응답을 주고 받을 수 있게 해주는 서비스 개발을 위한 기초 연구로써, 사용자의 문서를 분석하여 질문을 추출해 내고 어떤 의료 도메인에 해당하는 질문인지 분류하는 연구이다. 한글로 구성된 문서 속에서 질문에 해당하는 형태소 분석 방법을 이용하야 질문을 추출을 한 다음 질문 속의 단어 들을 분석하여 KORLEX를 이용한 단어간의 관계성을 분석하여 도메인을 분류하는 작업을 거친다. 또한 본 연구는 텍스트마이닝 기법과 인공지능의 분류 기법을 응용하여 소셜네트워크 속에서 질문과 응답을 분석하여, 의료 도메인의 전문가들이 볼 수 있게 함으로써, 소셜네트워크를 이용한 양방향의 질의응답 서비스를 제공 한다. 이 같은 양방향 질의응답 서비스를 통해 헬스케어 및 의료 관리 서비스를 받을 수 있다. 본 논문은 소셜네트워크 상에서 사용자들이 올린 헬스케어에 관련된 질문들을 추출하고 분류해 주는 과정에 한정하여 진행된 결과를 기술한다.
Journal of the Korean Institute of Intelligent Systems
/
v.10
no.3
/
pp.203-210
/
2000
In this paper, we propose a new unsupervised learning network and competitive learning algorithm for pattern classification. The proposed network is based on relative similarity, which is similarity measure between input data and cluster group. So, the proposed network and algorithm is called relative similarity network(RSN) and learning algorithm. According to definition of similarity and learning rule, structure of RSN is designed and pseudo code of the algorithm is described. In general pattern classification, RSN, in spite of deletion of learning rate, resulted in the identical performance with those of WTA, and SOM. While, in the patterns with cluster groups of unclear boundary, or patterns with different density and various size of cluster groups, RSN produced more effective classification than those of other networks.
Park, Cha-Hun;Bae, Sun-Dong;Choi, Seung-Gi;Choi, Seok-Hun;Choi, Jin-Won;Seok, Jae-Ho;Go, Gil-Yong
Proceedings of the Korean Society of Computer Information Conference
/
2020.07a
/
pp.661-662
/
2020
현대사회의 산업 현장에서 작업효율과 안전사고예방은 기업의 이익과 직결된다. 현장에서의 인력의 사용으로 인한 한계점을 가지고 있기 때문에 효율적이고 안정적으로 작업 효율을 내며 현장의 많은 안전사고를 미연에 방지하기 위해 많은 산업현장들은 4차 산업 혁명을 통해 수많은 작업들을 로봇을 이용한 자동화로 대체해 오고 있다. 단순히 짐을 옮기고 재고를 파악할 뿐인 간단한 작업임에도 불구하고 물류 피킹/분류 작업은 아직까지 인력을 사용한다. 인력을 한계를 극복하기 위해 작업 현장을 라인 트레이서를 통해 이동하고, 영상분석을 이용해 로봇 암으로 원하는 물건을 정확하게 피킹하고자 적재 하도록 설계한 '영상분석을 이용한 자동 피킹.분류시스템' 기술을 제안한다. 기존의 단순 반복 노동의 피킹/분류 작업을 수행하며 영상분석을 통해 어플리케이션을 이용하여 재고 관리또한 가능하다,
High resolution satellite image analysis has been recognized as an effective technique for monitoring local land-cover and atmospheric changes. In this study, a new high resolution map for land-cover was generated using both high-resolution IKONOS image and conventional land-use mapping. Fuzzy classification method was applied to classify land-cover, with minimum operator used as a tool for joint membership functions. In separateness analysis, the values were not great for all bands due to discrepancies in spectral reflectance by seasonal variation. The land-cover map generated in this study revealed that conifer forests and farm land in the ground and tidal flat and beach in the ocean were highly changeable. The kappa coefficient was 0.94% and the overall accuracy of classification was 95.0%, thus suggesting a overall high classification accuracy. Accuracy of classification in each class was generally over 90%, whereas low classification accuracy was obtained for classes of mixed forest, river and reservoir. This may be a result of the changes in classification, e.g. reclassification of paddy field as water area after water storage or mixed use of several classification class due to similar spectral patterns. Seasonal factors should be considered to achieve higher accuracy in classification class. In conclusion, firstly, IKONOS image are used to generated a new improved high resolution land-cover map. Secondly, IKONOS image could serve as useful complementary data for decision making when combined with GIS spatial data to produce land-use map.
This study was carried out to survey the flora of Hongdo Island in Sinan-gun, Jeollanam-do, South Korea. Specimens collected from previous Hongdo flora studies were reexamined using a relevant biodiversity database, and field surveys were carried out 22 times from April of 2003 to October of 2020. Based on the specimens collected during both previous studies and this study, the identified vascular plants of Hongdo consisted of 472 taxa comprising 102 families, 296 genera, 425 species, 6 subspecies, and 41 varieties. Among them, 111 taxa are newly recorded in this study, and 6 taxa are described in detail in terms of their morphological characteristics and habitat. Also, 29 taxa were reviewed or re-identified with corresponding taxonomic annotations. In Korea, Hongdo represents the northern distributional limit of the 4 taxa of Goodyera biflora, Damnacanthus major, Calanthe aristulifera, and Hemerocallis hongdoensis. Moreover, Hosta yingeri and Saussurea polylepis are endemic to Hongdo and nearby islands in Korea. Distribution maps of these species were prepared. Protected species designated by the Ministry of Environment were 7 taxa consisting of 2 taxa of level I, specifically Sedirea japonica and Neofinetia falcata, and 5 taxa of level II, which were Cymbidium macrorhizon, Woodwardia japonica, Dendrobium moniliforme, Calanthe aristulifera, and Bulbophyllum inconspicuum. Red list plants as designated by the National Institute of Biological Resources numbered 11 taxa. Naturalized plants numbered 40 taxa.
Recently, with the development of deep learning technology, researches to apply a deep learning algorithm to analyze unstructured data such as text and images are being actively conducted. Text classification has been studied for a long time in academia and industry, and various attempts are being performed to utilize data characteristics to improve classification performance. In particular, a hierarchical relationship of labels has been utilized for hierarchical classification. However, the top-down approach mainly used for hierarchical classification has a limitation that misclassification at a higher level blocks the opportunity for correct classification at a lower level. Therefore, in this study, we propose a methodology for classifying hierarchical data using the autoencoder-based deeply supervised network that high-level classification does not block the low-level classification while considering the hierarchical relationship of labels. The proposed methodology adds a main classifier that predicts a low-level label to the autoencoder's latent variable and an auxiliary classifier that predicts a high-level label to the hidden layer of the autoencoder. As a result of experiments on 22,512 academic papers to evaluate the performance of the proposed methodology, it was confirmed that the proposed model showed superior classification accuracy and F1-score compared to the traditional supervised autoencoder and DNN model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.