• Title/Summary/Keyword: 기술 분류

Search Result 6,587, Processing Time 0.033 seconds

A Study on the Types of Art Museum Visitors (미술전시 관람객의 유형 분류 연구)

  • Park, Narae;Han, Hakyung;Lee, Kyoobin
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2019.05a
    • /
    • pp.43-44
    • /
    • 2019
  • 본 연구는 미술전시 관람객의 유형을 분류하고 유형별 특성을 실증적으로 분석하는 것을 목표로 한다. 이를 위해 관람객 유형을 특징짓는 여러 요인을 추출해 설문을 설계하고 실제 미술관 관람객을 대상으로 설문조사를 수행하였다. 설문결과를 토대로 요인분석 및 군집분석을 수행해 '미술 애호 관람객', '학습 추구 관람객', '친교 추구 관람객'으로 명명한 세 가지 유형을 도출하였다. 이에 따른 각 유형의 특성 분석을 통해 관람객 맞춤형 전시관람 콘텐츠 설계시의 시사점을 제시하고자 하였다.

  • PDF

A Machine Vision System for Inspection of Car Sunroof Using SVM Algorithm (SVM 학습 알고리즘을 이용한 자동차 썬루프 장치의 볼트 유무 검사 장비)

  • Kim, Giseok;Lee, Saac;Cho, Jae-Soo
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.289-292
    • /
    • 2013
  • 본 논문은 SVM(Support Vector Machine) 학습알고리즘을 이용하여 자동차 썬루프 장치의 볼트 유무를 검사하는 자동차 부품 검사 장비에 관한 것이다. 자동화 시스템은 높은 정밀도와 생산성을 위한 빠른 처리 속도를 요구한다. 이를 위해 본 논문에서는 선형 SVM 학습알고리즘을 활용하여 자동차 썬루프 장치의 볼트 유무를 검사하는 알고리즘을 개발하였다. SVM 알고리즘은 분류를 위한 알고리즘이지만 ROI(Region-Of-Interest) 내의 모든 윈도우에 대한 분류를 수행하여 검출기 역할을 할 수 있도록 한다. 볼트가 있는 경우와 볼트가 없는 경우가 아닌 네거티브 샘플을 확보하기 위해 검출 대상 물체 주변에서 다양한 네거티브 샘플들을 추출한다. 그 결과 물체가 예상 위치에서 다소 빗나가는 경우에도 볼트 유무를 판별할 수 있을 뿐 아니라 볼트의 위치까지 검출할 수 있고, 처리 속도에서 자동화 시스템이 요구하는 수준에 도달함을 실험 결과를 통해 검증한다.

금융분야 AI의 윤리적 문제 현황과 해결방안

  • Lee, Su Ryeon;Lee, Hyun Jung;Lee, Aram;Choi, Eun Jung
    • Review of KIISC
    • /
    • v.32 no.3
    • /
    • pp.57-64
    • /
    • 2022
  • 우리 사회에서 AI 활용이 더욱 보편화 되어가고 있는 가운데 AI 신뢰에 대한 사회적 요구도 증가했다. 특히 최근 대화형 인공지능'이루다'사건으로 AI 윤리에 대한 논의가 뜨거워졌다. 금융 분야에서도 로보어드바이저, 보험 심사 등 AI가 다양하게 활용되고 있지만, AI 윤리 문제가 AI 활성화에 큰 걸림돌이 되고 있다. 본 논문에서는 인공지능으로 발생할 수 있는 윤리적 문제를 활용 도메인과 데이터 분석 파이프라인에 따라 나눈다. 금융 AI 기술 분야에 따른 윤리 문제를 분류했으며 각 분야별 윤리사례를 제시했고 윤리 문제 분류에 따른 대응 방안과 해외에서의 대응방식과 우리나라의 대응방식을 소개하며 해결방안을 제시했다. 본 연구를 통해 금융 AI 기술 발전에 더불어 윤리 문제에 대한 경각심을 고취시킬 수 있을 것으로 기대한다. 금융 AI 기술 발전이 AI 윤리와 조화를 이루며 성장하길 바라며, 금융 AI 정책 수립 시에도 AI 윤리적 문제를 염두해 두어 차별, 개인정보유출 등과 같은 AI 윤리 규범 미준수로 파생되는 문제점을 줄이며 금융분야 AI 활용이 더욱 활성화되길 기대한다.

Domain Generalization via Class Balanced Probability Learning (균일한 부류 확률값 학습을 통한 도메인 일반화)

  • Yoon, Sungjoon;Shim, Kyujin;Kim, Changick
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.103-105
    • /
    • 2020
  • 본 논문에서는, 영상 분류 문제에서 손실 값 계산 시 정답 부류를 제외한 나머지 부류에서 우세한 결괏값이 나오지 않도록 평활화하는 보조적인 손실함수를 고안한다. 합성곱 신경망 구조를 이용해 학습이 진행되면 손실함수가 작아지는 방향으로 가중치가 갱신되기 때문에, 정답을 제외한 나머지 부류들의 결괏값은 줄어든다. 하지만, 정답을 제외한 나머지 부류들 사이의 상대적인 값이 고려되지 않고 손실함수가 줄어들기 때문에 값들은 균일하지 않게 되고, 정답 부류와 유사한 특징을 가진 부류들의 값이 상대적으로 커지게 된다. 이는 정답 부류와 나머지 부류 중 가장 값이 큰 부류 사이에 공통의 특징을 공유한다고 생각할 수 있다. 정답 부류만이 가지고 있는 고유의 특징을 추출하지 못하고, 다른 부류도 가지고 있는 특징의 흔적이 남아있게 됨으로써 테스트 시 소스 도메인과 전혀 다른 도메인의 영상이 보일 때 그러한 특징이 부각 되어 부정확한 결과를 초래하게 된다. 본 논문에서는 단순한 손실함수의 추가로 도메인이 다른 환경에서 기존의 연구보다 좋은 분류 결과를 보여주는 것을 실험을 통해 확인하였다.

  • PDF

Development of Game Graphics and AI Picture Classification Model for Real-Life Images on CNN (CNN 기반의 실사 이미지에 대한 게임 그래픽과 AI 그림 분류 모델 개발)

  • Seung-Bo Park;Dong-Hwi Cho;Seo-Young Choi;Eun-Ji Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.465-466
    • /
    • 2023
  • AI 기술의 발전으로 AI가 그린 그림과 인간이 직접 그린 그림을 식별하는 것이 어려워졌다. AI 기술을 통해 작품을 특정 화풍으로 그리는 것이 쉬워져 작품 도용과 평가 절하가 증가하고 있으며, AI가 인간과 유사하게 그림을 표현하는 경우 딥페이크 피싱과 같은 악용 사례도 늘어나고 있다. 따라서 본 논문에서는 AI 그림을 식별하기 위한 인공지능 모델 개발을 목표로 하고 있으며, 데이터셋을 구축하여 인공지능 기술을 활용한 알고리즘을 개발한다. YOLO Segmentation과 CNN을 활용하여 학습을 진행하고, 이를 통해 도용과 딥페이크 피해를 방지하는 프로세스를 제안한다.

  • PDF

Image Processing Technique to Mitigate One-Pixel Attack (단일 픽셀 공격을 완화하기 위한 이미지 처리 기법)

  • Yeon-Ji Lee;Il-Gu Lee
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.317-320
    • /
    • 2024
  • 최근 이미지 분류, 자율 주행 등 다양한 분야에 인공지능 기술이 접목됨에 따라 인공지능 기술을 이용한 새로운 위협이 등장하고 있다. 적대적 공격 중 단일 픽셀 공격은 이미지의 픽셀 하나를 왜곡하여 인공지능의 올바른 분류를 방해하는 공격 기법이다. 본 논문은 단일 픽셀 공격을 완화하는 이미지 처리 기법을 제안한다. 실험 결과에 따르면 제안한 방법을 적용하면 이미지의 사이즈를 27×27 로 조절하였을 때 100 개의 단일 픽셀 공격 이미지 중 94 개를 복구하였으며, 이미지의 신뢰도를 68.89% 개선하였다.

Development of an Adult Image Classifier using Skin Color (피부색상을 이용한 유해영상 분류기 개발)

  • Yoon, Jin-Sung;Kim, Gye-Young;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.1-11
    • /
    • 2009
  • To classifying and filtering of adult images, in recent the computer vision techniques are actively investigated because rapidly increase for the amount of adult images accessible on the Internet. In this paper, we investigate and develop the tool filtering of adult images using skin color model. The tool is consisting of two steps. In the first step, we use a skin color classifier to extract skin color regions from an image. In the nest step, we use a region feature classifier to determine whether an image is an adult image or not an adult image depending on extracted skin color regions. Using histogram color model, a skin color classifier is trained for RGB color values of adult images and not adult images. Using SVM, a region feature classifier is trained for skin color ratio on 29 regions of adult images. Experimental results show that suggested classifier achieve a detection rate of 92.80% with 6.73% false positives.

Identity and Academic Classification of Earth Science in Korea (지구과학의 정체성과 학문 분류)

  • Lee, Chang-Zin
    • Journal of the Korean earth science society
    • /
    • v.24 no.7
    • /
    • pp.650-656
    • /
    • 2003
  • Since the year 2000, emphasis has been placed on a more strict evaluation of national academic societies and their journals, which has caused most societies to endeavour to produce higher quality journals and research. Korean Earth Science Society (KESS) should be such an exemplary model. Thus, the purpose of this study was to isolate characteristics of well-evaluated academic societies and explore the direction KESS should proceed to better its educational agents and strengthen its research contributions. Back in 2002, the Korean Research Foundation graded the journal of KESS as an officially qualified journal. It was bequeathed the first institute to be registered in the category of Earth Science. Furthermore, such classification was accepted as national academic classification and Scientific Citation Index through a public hearing executed by the Korea Institute of Science and Technology Evaluation and Planning in 2003. Currently, the Korean Research Foundation is reviewing a proposal to approve Earth Science as a unique citation index category. This proposal is quite crucial in that such an approval would be followed by increased funding and affect the future status of KESS. More support and interest from all members of KESS are required to establish the identity of Earth Science as an independent academic entity.

A Case Study for the Reorganization of the Standard of Government Function Classification (BRM): Focusing on the 'Cultural Heritage' Policy Area (정부기능분류체계(BRM)의 재정비를 위한 사례연구 - '문화재' 정책영역을 중심으로 -)

  • Nam, Seo-jin;Yim, Jin-hee
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.17 no.2
    • /
    • pp.129-163
    • /
    • 2017
  • This study investigated the administrative history, from the introduction of the "Standard of Government Function Classification" (BRM) to its development and application. Through the results of the survey, the causes of the problems observed in the current government's functional classification system were revealed. The current survey examined the functional classification scheme of the central government and local governments on the "cultural heritage" policy area (9 major functions, 59 middle functions, 297 small functions, and 1,287 unit tasks). It confirmed the problem of the separation of functions between central and local governments as well as other problems. Among the problems, this study proposed an improvement model through four representative cases such as the "designation of cultural heritage." In order to reorganize the "Standard of Government Function Classification," it is necessary to design a business function with the reproduction of tasks, establish a system for management and operation in order to maintain the consistency of the business function, educate users, and suggest continuous improvement.

Text Categorization Using TextRank Algorithm (TextRank 알고리즘을 이용한 문서 범주화)

  • Bae, Won-Sik;Cha, Jeong-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.110-114
    • /
    • 2010
  • We describe a new method for text categorization using TextRank algorithm. Text categorization is a problem that over one pre-defined categories are assigned to a text document. TextRank algorithm is a graph-based ranking algorithm. If we consider that each word is a vertex, and co-occurrence of two adjacent words is a edge, we can get a graph from a document. After that, we find important words using TextRank algorithm from the graph and make feature which are pairs of words which are each important word and a word adjacent to the important word. We use classifiers: SVM, Na$\ddot{i}$ve Bayesian classifier, Maximum Entropy Model, and k-NN classifier. We use non-cross-posted version of 20 Newsgroups data set. In consequence, we had an improved performance in whole classifiers, and the result tells that is a possibility of TextRank algorithm in text categorization.