The Journal of the Institute of Internet, Broadcasting and Communication
/
v.19
no.2
/
pp.25-40
/
2019
Many companies are executing big data analysis and utilization projects to legitimize the development of new business areas or conversion of management or technical strategies. In Korea and abroad, however, such projects are failing because they are not completed within specified deadlines, which is not unrelated to the current situation in which the knowledge base for big data project risk management from an engineering perspective is grossly lacking. As such, the current study analyzes the risk factors of big data implementation and utilization projects, in addition to finding risk factors that are highly important. To achieve this end, the study extracts project risk factors via literature review, after which they are grouped using affinity methodology and sifted through expert surveys. The deduced risk factors are structuralize using factor analysis to develop a table that categorizes various types of big data project risk factors. The current study is significant that in it provides a basis for developing basic control indicators related to risk identification, risk assessment, and risk analysis. The findings from the study contribute greatly to the success of big data projects, by providing theoretical basis regarding efficient big data project risk management.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.12
/
pp.178-185
/
2018
A self-report evaluation is used to prevent driving accidents by elderly drivers. The majority of normal older adults may have mild cognitive impairment with reduced cognitive function. These depressed cognitive functions may be variables that affect the performance of elderly drivers. This study confirmed the cognitive functions that affect the self-reported evaluation for elderly drivers with mild cognitive impairment. Based on the results of the Korean Version of the Montreal Cognitive Assessment, 103 elderly drivers were classified into mild cognitive impairment and normal groups of elderly drivers. The Korean-Drivers 65 plus scores used in the self-reported evaluation of the two groups were compared, and the cognitive functions affecting the evaluation were analyzed. Results found the mild cognitive impairment group showed a significantly lower evaluation performance compared to the normal group, and the self-reported evaluation results of the elderly driver with mild cognitive impairment showed a significant correlation between visuoconstructional skills and delayed recall. As a result of regression analysis, the visuoconstructional skill was identified as the cognitive function with the strongest influence on the self-reported evaluation performance. Delayed recall was also found to have a partial effect but not at the level of altering the self-reported evaluation results of the elderly driver with mild cognitive impairment.
Prediction of a stock price has been a subject of interest for a long time in financial markets, and thus, many studies have been conducted in various directions. As the efficient market hypothesis introduced in the 1970s acquired supports, it came to be the majority opinion that it was impossible to predict stock prices. However, recent advances in predictive models have led to new attempts to predict the future prices. Here, we summarize past studies on the price prediction by evaluation measures, and predict the direction of stock prices of Samsung Electronics, LG Chem, and NAVER by applying various machine learning models. In addition to widely used technical indicator variables, accounting indicators such as Price Earning Ratio and Price Book-value Ratio and outputs of the hidden Markov Model are used as predictors. From the results of our analysis, we conclude that no models show significantly better accuracy and it is not possible to predict the direction of stock prices with models used. Considering that the models with extra predictors show relatively high test accuracy, we may expect the possibility of a meaningful improvement in prediction accuracy if proper variables that reflect the opinions and sentiments of investors would be utilized.
Social problems, such as economic instability, aging population, heightened competition, and changes in personal values, might become more serious in the near future. Affective computing has received much attention in the scholarly community as a possible solution to potential social problems. Accordingly, we examined domestic and global knowledge structure, major keywords, current research status, international research collaboration, and network for each major keyword, focusing on keywords related to affective computing. We searched for articles on a specialized academic database (Scopus) using major keywords and carried out bibliometric and network analyses. We found that China and the United States (U.S.) have been active in producing knowledge on affective computing, whereas South Korea lags well behind at around 10%. Major keywords surrounding affective computing include computing, processing, affective analysis, research, user modeling categorizing recognitions, and psychological analysis. In terms of international research collaboration structure, China and the U.S. form the largest cluster, whereas other countries like the United Kingdom, Germany, Switzerland, Spain, and Canada have been strong collaborators as well. Contrastingly, South Korea's research has not been diverse and has not been very successful in producing research outcomes. For the advancement of affective computing research in South Korea, the present study suggests strengthening international collaboration with major countries, including the U.S. and China and diversifying its research partners.
The status of Ppuri industry, including foundry industry was analyzed through statistical surveys over the past 10 years from 2009 to 2018, and summarized for each six Ppuri industries' points of view. Various statistics of Ppuri industry defined by the KSIC (Korean Standard Industry Classification) was obtained, and the status of Ppuri industry was identified through a sample survey of 5,000 companies from more than 30,000 target business companies of Ppuri industry. Throughout the analyzing process, we presented a variety of indicators, such as the number of the Ppuri companies and its ratio, regional distribution through Korean provinces, number of workers, characteristics by age group, sales, profit rates, etc. By devising a comparative method to measure the relative strength of Ppuri industry in Korea, Germany, and Japan, we have presented the competitiveness index change over the 10 years of time. The competitiveness index can be effectively and meaningfully used during various activities of the development of Ppuri industry in the forth coming future. With the current obtained data, we figured out the status of each 6 Ppuri industries, regional distribution, status of workers, sales and profit rates. We also suggested various proposals for strategy and policy making for each sector with urging voluntary response from Ppuri industry.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.49
no.9
/
pp.709-719
/
2021
Recent progress in analysis and flight simulation methods enables wider use of a virtual certification and reduces number of certification flight tests. Aerodynamic database (AeroDB) is one of the most important components for the flight simulation. It is composed of aerodynamic coefficients at a range of flight conditions and control deflections. This paper proposes and efficient method for construction of AeroDB that combines Gaussian Process based Variable Fidelity Modeling with adaptive sampling algorithm. A case study of virtual certification of a F-16 fighter is presented. Four AeroDB were constructed using different number and distribution of high-fidelity data points. The constructed database is then used to simulate gliding, short pitch, and roll response. Compliance with certification regulations is then checked. The case study demonstrates that the proposed method can significantly reduce number of high-fidelity data points while maintaining high accuracy of the simulation.
Musculoskeletal disorders affect workers' safety in most industries, and forest operations are classified as a musculoskeletal burden according to the Occupational Safety and Health Act in South Korea. In particular, felling and delimbing operations are mainly conducted by manpower, and then, it is necessary to evaluate ergonomic risk assessment for safety of felling and delimbing workers. Three ergonomic risk assessment methods, such as Ovako Working posture Analysis System (OWAS), Rapid Upper Limb Assessment (RULA), and Rapid Entire Body Assessment (REBA), are available for assessing exposure to risk factors associated with timber harvesting operations. Here, three ergonomic risk assessment methods were applied to examine ergonomic risk assessments in chainsaw felling and delimbing operations. Additionally, exposure to risk factors in each method was analyzed to propose an optimal working posture in felling and delimbing operations. The risk levels of these operations were evaluated to be highest in the RULA method, followed by the OWAS and REBA methods, and most of the exposed working postures were examined with a low-risk level of two and three without requiring any immediate working posture changes. However, two significant working postures, including the bending posture of the waist and leg in felling operation and standing posture on the fallen trees in delimbing operation, were assessed as the high-risk level and needed immediate working posture changes. Low-risk work levels were examined in the squatting posture for felling operation and the straightened posture of the waist and leg for delimbing operation. Moreover, the slope in felling operation and the tree height in delimbing operation significantly affected risk level assessment of working posture. Therefore, our study supports that felling and delimbing workers must operate with low-risk working postures for safety.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.1
/
pp.251-256
/
2021
This study analyzed the most frequently used navigation cases in a desktop environment. As a result of the research, GNB induces users' search as the top element of the search structure and can place color, text, icon, and image elements. LNB could be classified in the form of a dropdown, flyout, dropline and mega menu. In this study, the navigation structure of Interpark and Interpark among open markets used by users was analyzed. G-Market's GNB has a two-tier structure with color, text, image, and icon elements, and Interpark has a three-tiered horizontal label. Interpark's GNB drew attention by placing a badge on the seasonal label, which is a temporary content section, unlike G-market. It can be seen that the LNBs of both shopping malls have flyout menus that protrude when you mouse over the category menu arranged in a vertical text form under the logo placed on the left. The flyout menu has a complex structure consisting of the layout of the mega menu. This study is meaningful in revealing user experience elements by analyzing the GNB and LNB of shopping malls these days where internet shopping is increasing.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.3
/
pp.707-725
/
2021
Energy management systems (EnMS) contribute to sustainable energy saving and greenhouse gas reduction by emphasizing the role of energy management in production-oriented economies. Although understanding the methods used to measure energy performance is a key factor in constructing successful EnMS, few attempts have been made to examine these methods, their applicability, and their utility in practice. To fill this research gap, this study aimed to deepen the understanding of energy performance measures by focusing on four energy performance indicators (EnPIs) proposed by ISO 50006, namely the measured energy value, ratio between measured values, linear regression model, and nonlinear regression model. This paper presents policy and managerial implications to facilitate the effective use of these measures. An analytic hierarchy process (AHP) analysis was conducted with 41 experts to analyze the preference for EnPIs and their key selection criteria by the industry sector, and organization and user type. The findings suggest that the most preferred EnPI is the ratio between the measured values followed by the measured energy value. The ease of use was considered to be most important while choosing EnPIs.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.13
no.6
/
pp.489-495
/
2020
The amount of data is increasing through various IT devices in a hyper-connected society where the 4th revolution is progressing, and new value can be created by analyzing that data. This paper was collected total 1,526 articles from 2017 to 2019 in central magazines, economic magazines, regional associations, and major broadcasting companies with the keyword "(East Coast Tourism or East Coast Travel) and Gangwon-do" through Bigkinds. It was performed the topic modeling using LDA algorithm implemented in the R language to analyze the collected 1,526 articles. It was extracted keywords for each year from 2017 to 2019, and classified and compared keywords with high frequency for each year. It was setted the optimal number of topics to 8 using Log Likelihood and Perplexity, and then inferred 8 topics using the Gibbs Sampling method. The inferred topics were Gangneung and Beach, Goseong and Mt.Geumgang, KTX and Donghae-Bukbu line, weekend sea tour, Sokcho and Unification Observatory, Yangyang and Surfing, experience tour, and transportation network infra. The changes of articles on East coast tourism was was analyzed using the proportion of the inferred eight topics. As the result, the proportion of Unification Observatory and Mt. Geumgang showed no significant change, the proportion of KTX and experience tour increased, and the proportion of other topics decreased in 2018 compared to 2017. In 2019, the proportion of KTX and experience tour decreased, but the proportion of other topics showed no significant change.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.