DOI QR코드

DOI QR Code

Investigating the Use of Energy Performance Indicators in Korean Industry Sector

한국 산업부문의 에너지성과 지표 이용에 관한 연구

  • Shim, Hong-Souk (Building Energy Management Division, Korea Energy Agency) ;
  • Lee, Sung-Joo (Department of Industrial Engineering, Ajou University)
  • 심홍석 (한국에너지공단 건물에너지실) ;
  • 이성주 (아주대학교 산업공학과)
  • Received : 2020.12.11
  • Accepted : 2021.03.05
  • Published : 2021.03.31

Abstract

Energy management systems (EnMS) contribute to sustainable energy saving and greenhouse gas reduction by emphasizing the role of energy management in production-oriented economies. Although understanding the methods used to measure energy performance is a key factor in constructing successful EnMS, few attempts have been made to examine these methods, their applicability, and their utility in practice. To fill this research gap, this study aimed to deepen the understanding of energy performance measures by focusing on four energy performance indicators (EnPIs) proposed by ISO 50006, namely the measured energy value, ratio between measured values, linear regression model, and nonlinear regression model. This paper presents policy and managerial implications to facilitate the effective use of these measures. An analytic hierarchy process (AHP) analysis was conducted with 41 experts to analyze the preference for EnPIs and their key selection criteria by the industry sector, and organization and user type. The findings suggest that the most preferred EnPI is the ratio between the measured values followed by the measured energy value. The ease of use was considered to be most important while choosing EnPIs.

에너지경영시스템은 생산 중심으로 발전하는 한국의 경제구조에서 에너지경영의 역할을 강조하여 지속 가능한 에너지 절약 및 온실가스 감축에 기여하고 있다. 에너지 성과에 대한 측정 방법론을 이해하는 것은 기업이 성공적인 에너지경영시스템을 구축하는 데 핵심 요소이지만, 적용 방법론, 적용 가능성 및 실제 활용도를 조사하려는 시도는 국내에서 찾아보기 어렵다. 본 연구는 에너지경영시스템에 관한 국제표준인 ISO 50006에서 제안한 4가지 에너지 성과 지표(EnPI)인 ①측정 된 에너지 값, ②측정 된 값 간의 비율, ③ 선형 회귀 모델, ④ 비선형 회귀 모델에 초점을 맞추어 에너지성과 측정에 대한 이해를 심화시키고, 효과적으로 확산시키기 위한 정책과 적정 관리 지표를 제시하는 것을 목표로 한다. 41명의 전문가들의 설문조사를 통해 수집된 데이터를 활용하여, EnPI에 대한 선호도와 산업 분류별, 조직규모, 전문가 유형별로 EnPI의 주요 선책 기준을 분석하였다. 연구 결과에 따르면 가장 선호되는 EnPI는 측정 된 값과 측정 된 에너지 값 사이의 비율이며 EnPI를 선택하는 기준은 사용 편의성이 가장 중요하다고 분석되었다.

Keywords

References

  1. M. Fischedick, J. Roy, A. Abdel-Aziz, A. Acquaye, J.M. Allwood, J.-.P. Ceron et al., "Industry, Climate Change 2014: Mitigation of Climate Change", pp. 739-810, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014. DOI : https://doi.org/10.1017/CBO9781107415416.016
  2. International Energy Agency, World Energy Balances, pp. 11, 2018.
  3. Joint Association of related Ministries, 1st Basic Plan for Response to Climate Change, Korean Government, December 2016.
  4. International Standardization Organization, ISO 50001: Energy Management Systems - Requirements with Guidance for Use, 2018
  5. Carbon Dioxide Information Analysis Center, Fossil-Fuel CO2 Emissions 2014, Available From : https://cdiac.ess-dive.lbl.gov/
  6. The Global Carbon Project, Global Carbon Budget 2019, Available From : https://www.globalcarbonproject.org/
  7. Korean Ministry of Trade, Industry and Energy, Second Energy Master Plan, 2014.01
  8. International Energy Agency, Energy Management Programs for Industry, 2012.
  9. International Standardization Organization, ISO 50004: Energy Management Systems - Guidance for the Implementation Maintenance and Improvement of an Energy Management System, 2014.
  10. Korea Energy Agency, Energy Handbook, 2018.
  11. International Standardization Organization, Does ISO 50001 still live up to its promise?, 2016.
  12. Clean Energy Ministerial, Energy Management Campaign, Available from : https://www.cleanenergyministerial.org
  13. German Environment Agency, Energy management systems in practice, 2020.
  14. A. Mckane, D. Desai, M. Matteini, W. Meffert, R. Williams, R. Risser, Thinking Globally : How ISO 50001-Energy Management can make industrial energy efficiency standard practice, Lawrence Berkeley National Lab, 2009. DOI : https://doi.org/10.2172/983191
  15. D. Kwon, J. Lim, E. Kim, A study on the development of energy management system, Korean Academic Society of Business Administration, pp.1-19, 2008.
  16. K. Song, J. Jang, Development of energy-FMEA for energy review of ISO 50001 energy management system, Journal of Korean Reliability Society 14 (2), pp. 137-146, 2014
  17. M. G. Perroni, E. P. D. Lima, S. E. G. D. Costa, Proposal of a Model for Evaluation of Industrial Energy Performance: From Energy Efficiency to Effectiveness, in: 7th International Conference on Production Research/American Region, 2014.
  18. S. Okajima, H. Okajima, Analysis of energy intensity in Japan, Energy Policy 61, pp. 574-586, 2013 DOI : https://dx.doi.org/10.1016/j.enpol.2013.05.117
  19. Y. Xu, Using performance indicators to reduce cost uncertainty of China's CO2 mitigation goals, Energy Policy 53 (2013) 454-461. DOI : https://doi.org/10.1016/j.enpol.2012.11.009
  20. R. Tan, B. Lin, What factors lead to the decline of energy intensity in China's energy intensive industries?, Energy Economics 71, pp. 213-221, 2018. DOI : https://dx.doi.org/10.1016/j.eneco.2018.02.019
  21. B. W. Ang, T. Goh, Bridging the gap between energy-to-GDP ratio and composite energy intensity index, Energy Policy 119, pp. 105-112, 2018. DOI : https://dx.doi.org/10.1016/j.enpol.2018.04.038
  22. G. J. M. Phylipsen, K. Blok, E. Worrell, International comparisons of energy efficiency-Methodologies for the manufacturing industry, Energy Policy 25 (7-9), pp. 715-725, 1997. DOI : https://dx.doi.org/10.1016/s0301-4215(97)00063-3
  23. P. Thollander, M. Ottosson, Energy management practices in Swedish energy-intensive industries, Journal of Cleaner Production 18 (12), pp. 1125-1133, 2010. DOI : https://dx.doi.org/10.1016/j.jclepro.2010.04.011
  24. H. H. Latif, B. Gopalakrishnan, A. Nimbarte, K. Currie, Sustainability index development for manu- facturing industry, Sustainable Energy Technologies and Assessments 24, pp. 82-95, 2017 DOI : https://dx.doi.org/10.1016/j.jclepro.2010.04.011
  25. R. Kannan, W. Boie, Energy management practices in SME--case study of a bakery in Germany, Energy Conversion and Management 44, pp. 945-959, 2003. DOI : https://dx.doi.org/10.1016/s0196-8904(02)00079-1
  26. C. Schmidt, W. Li, S. Thiede, B. Kornfeld, S. Kara, C. Herrmann, Implementing Key Per- formance Indicators for Energy Efficiency in Manufacturing, Procedia CIRP 57, pp. 758-763, 2016. DOI : https://dx.doi.org/10.1016/j.procir.2016.11.131
  27. M. Benedetti, V. Cesarotti, V. Introna, From energy targets setting to energy-aware operations control and back: An advanced methodology for energy efficient manufacturing, Journal of Cleaner Production 167, pp. 1518-1533, 2017. DOI : https://dx.doi.org/10.1016/j.jclepro.2016.09.213
  28. G. Boyd, E. Dutrow, W. Tunnessen, The evolution of the ENERGY STAR® energy performance indicator for benchmarking industrial plant manufacturing energy use, Journal of Cleaner Production 16 (6), pp. 709-715, 2018. DOI : https://dx.doi.org/10.1016/j.jclepro.2007.02.024
  29. Y. Geng, W. Ji, B. Lin, J. Hong, Y. Zhu, Building energy performance diagnosis using energy bills and weather data, Energy and Buildings 172, pp. 181-191, 2018. DOI : https://doi.org/10.1016/j.enbuild.2018.04.047
  30. J. Ke, L. Price, M. McNeil, N. Z. Khanna, N. Zhou, Analysis and practices of energy bench- marking for industry from the perspective of systems engineering, Energy 54, pp. 32-44, 2013. DOI : https://dx.doi.org/10.1016/j.energy.2013.03.018
  31. J. Madan, M. Mani, J. H. Lee, K. W. Lyons, Energy performance evaluation and improvement of unit-manufacturing processes: injection molding case study, Journal of Cleaner Production 105, pp. 157-170, 2015. DOI : https://dx.doi.org/10.1016/j.jclepro.2014.09.060
  32. M. T. Ke, C. H. Yeh, C. J. Su, Cloud computing platform for real-time measurement and verification of energy performance, Applied Energy 188, pp. 497-507, 2017. DOI : https://doi.org/10.1016/j.apenergy.2016.12.034
  33. T. L. Saaty, The Analytic Hierarchy Process, McGraw-Hill, New York, 1980.
  34. H. S. Shim, S. J. Lee, A Study of Determination of Energy Performance Indicator for Applying Energy Management System in Industrial Sector, 2018 Portland International Conference on Management of Engineering and Technology (PICMET), 2018. DOI : https://doi.org/10.23919/PICMET.2018.8482000
  35. R. Y. Kwak, D. S. Yim, H. J. Yoon, Y. K. Jeong, I. W. Lee, Proposal for assessment indices for energy saving performance of building energy management system using AHP analysis, Journal of the Architectural Institute of Korea Planning & Design 28 (3), pp. 277-286, 2012 https://doi.org/10.5659/JAIK_PD.2012.28.3.277
  36. M. N. Addy, E. Adinyira, J. Ayarkwa, Identifying and weighting indicators of building energy efficiency assessment in Ghana, Energy Procedia 134, pp. 161-170, 2017. DOI : https://dx.doi.org/10.1016/j.egypro.2017.09.554
  37. K. Pavitt, Sectoral patterns of technical change: Towards a taxonomy and a theory, Research Policy 13 (6), pp. 343-373, 1984. DOI : https://dx.doi.org/10.1016/0048-7333(84)90018-0
  38. E. Y. Kim, A study on the determinants of technological innovation in the Korean manufacturing firms-focusing on technological regime, Journal of Industrial Economics and Business 24 (3), pp. 1451-1478, 2011.
  39. M. Puig, C. Wooldridge, R. M. Darbra, Identification and selection of Environmental Perfor- mance Indicators for sustainable port development, Marine Pollution Bulletin 81 (1), pp. 124-130, 2014. DOI : https://dx.doi.org/10.1016/j.marpolbul.2014.02.006
  40. D. Cook, N. M. Saviolidis, B. D. sdottir, L. Johannsdottir, S. Olafsson, Measuring countries' environmental sustainability performance-The development of a nation-specific indicator set, Ecological Indicators 74, pp. 463-478, 2017. DOI : https://dx.doi.org/10.1016/j.ecolind.2016.12.009
  41. K. Wolf, R. Scheumann, N. Minkov, Y.-J. Chang, S. Neugebauer, M. Finkbeiner, Selection Criteria for Suitable Indicators for Value Creation Starting with a Look at inthe Environmental Dimension, Procedia CIRP 26, pp. 24-29, 2015. DOI : https://dx.doi.org/10.1016/j.procir.2014.07.069
  42. D. Kibira, S. Feng, Environmental KPI Selection Using Criteria Value and Demonstration, in: IFIP International Conference on Advances in Production Management Systems, Springer, pp. 488-495, 2017. DOI : https://doi.org/10.1007/978-3-319-66926-7_56
  43. Organization for Economic Cooperation and Development, OECD Environmental Indicators Development, Measurement and Use, 2003.
  44. I. Miremadi, Y. Saboohi, S. Jacobsson, Assessing the performance of energy innovation systems: Towards an established set of indicators, Energy Research & Social Science 40, pp. 159-176, 2018. DOI : https://dx.doi.org/10.1016/j.erss.2018.01.002
  45. K. Friedrichs, Energy key performance indicators: a european benchmark and assessment of meaningful indicators for the use of energy in large corporations, Master thesis paper in NHH HEC Paris, 2013.
  46. T. Kurka, D. Blackwood, Participatory selection of sustainability criteria and indicators for bioenergy developments, Renewable and Sustainable Energy Reviews 24, pp. 92-102, 2013. DOI : https://dx.doi.org/10.1016/j.rser.2013.03.062
  47. A. Mascarenhas, L. M. Nunes, T. B. Ramos, Selection of sustainability indicators for planning: combin- ing stakeholders' participation and data reduction techniques, Journal of Cleaner Production 92, pp. 295-307, 2015. DOI : https://dx.doi.org/10.1016/j.jclepro.2015.01.005