• Title/Summary/Keyword: 기술 분류

Search Result 6,587, Processing Time 0.036 seconds

A Study on Classification of Mechanism for Office Chair (사무용 의자의 Mechanism 분류에 관한 연구)

  • 박수찬;배금종;박명규;임정묵
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.333-337
    • /
    • 2002
  • 본 연구에서는 구조설계에 관한 관점에서 사무용 의자에 기능을 부여할 수 있는 메커니즘에 대한 분류 및 특성분석에 대해 기술하였으며 분류된 메커니즘 유형의 구성요소에 대해 분석하였다. 분류 기준으로는 메커니즘의 소재, 형태, 기능 등으로 분류하였고 이에 따른 사용자와의 interface측면에서 메커니즘과 직접적인 상관관계가 깊은 레버 및 손잡이의 위치 등에 대한 적합성을 검토하였다. 본 연구를 통하여 사무용 의자 설계 시 물리적인 적합도를 높일 수 있는 요소를 고려하는데 활용될 수 있기를 기대하며 메커니즘의 적용성과 기능의 적합성을 확보할 수 있는 정보로서 활용되기를 기대한다.

  • PDF

인체 골격 정보를 이용한 Multiclass SVM 기반의 자세 인식 분류 기법

  • Gang, Min-Ju;Gang, Je-Won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.74-76
    • /
    • 2015
  • 본 논문에서는 효율적인 자세인식을 위해 인체 골격 정보를 활용한 멀티클래스 SVM(Multiclass Support Vector Machine)학습 기반의 자세 인식 분류 기법을 제안한다. RGB 카메라로 취득한 영상을 활용하거나 깊이 카메라로부터 취득한 골격 정보를 그대로 사용하는 기존 연구와 달리 제안 기법에서는 깊이 정보로부터 추출한 인체의 3 차원 골격 정보를 이용하여 고차원의 특징을 추출하고 그로부터 자세 인식 분류를 수행한다. 제안 기법의 특징 벡터는 깊이 정보에서 취득한 골격 정보의 관절간 각도의 조합으로 구성하여 인체의 골격 편차에 강인할 뿐 아니라 특징의 차원을 효과적으로 감소시킬 수 있다. 또한 분류기로는 멀티클래스 SVM 방식 중 one-vs-one 분류 방식을 이용하여 학습 및 판별을 수행함으로써 제안 기술의 성능을 평가한다. 실험을 통해 제안 기법은 다수의 자세에서 비교하는 다른 학습 기법보다 비교적 높은 자세인식률을 보인다.

  • PDF

A Semantic Analysis of Korean Compound Nouns with Enforced Semantic Constraints using a Na${\ddot{i}}$ve Bayes Classifier (나이브 베이즈 분류기를 이용한 의미제약이 강화된 한국어 복합명사 의미 분석)

  • Lee, Yong-Hoon;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.102-106
    • /
    • 2011
  • 본 논문에서는 사전 원어정보를 이용한 기존 방법에 나이브 베이즈 분류기를 추가로 이용하는 의미제약 기술에 대하여 소개한다. 의미제약은 의미 분석의 전처리 단계로서 부분적으로 중의성을 해소하여 입력된 복합명사의 분석 정확도 뿐만 아니라 전체적인 분석시간의 단축에도 큰 도움을 준다. 나이브 베이즈 분류기를 이용하는 방법은 사전의 의존성으로 인해 제약할 수 없는 2-gram을 대상으로 제약을 시도한다. 분류기를 위한 학습데이터는 의미 태깅된 기분석 2-gram사전을 이용하여 U-WIN의 관계정보와 사전 그리고 패턴들에 의해 생성된다. 원어정보로 해결하지 못하는 34.63%의 2-gram중 2.83%에 대해 추가로 제약에 성공 하였다.

  • PDF

Selecting Initial Training Set for Active Learning by Clustering (군집화 기법을 이용한 능동적 학습의 최초학습예제 선정)

  • 강재호;류광렬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.16-18
    • /
    • 2003
  • 기계학습의 분류(classification) 기술을 실제 문제에 적용하기 위해서는 카테고리(category)를 부여한 학습예제를 상당수 준비하여야 한다. 예제에 카테고리를 부여(labeling)하는 작업에는 무시할 수 없는 시간과 인력을 필요로 한다. 능동적 학습(active learning)은 동일한 수의 학습예제로 최대한의 성능을 달성하기 위하여 카테고리를 부여할 학습예제를 선별하는 전략이다. 능동적 학습은 현재까지 파악된 정보에 기반하여 분류기(classifier)를 생성하고, 생성된 분류기를 활용하여 카테고리를 부여받았을 때 가장 이득이 큰 예제들을 선정하여 사용자에게 문의하는 과정을 반복하여 수행한다. 만일 능동적 학습의 첫 학습단계에서 학습에 보다 유용한 예제들을 최초학습예제집합으로 선정한다면 같은 수의 학습예제로 더 나은 성능을 달성할 수 있을 것이다. 본 논문에서는 유사한 예제들은 동일한 카테고리에 속할 가능성이 높다는 일반적인 가정에 기반하여 예제들을 군집화(clustering)한 후, 생성된 각 군집을 대표할 수 있는 예제로 최초학습예제집합으로 구성하는 방안을 제안한다. 제안한 방안을 문서분류 문제를 대상으로 실험해 본 결과 최초학습예제들을 임의로 선정하는 방식보다 정확도가 높은 분류기를 생성할 수 있음을 확인하였다.

  • PDF

A Study on the Storage Requirement and Incremental Learning of the k-NN Classifier (K_NN 분류기의 메모리 사용과 점진적 학습에 대한 연구)

  • 이형일;윤충화
    • The Journal of Information Technology
    • /
    • v.1 no.1
    • /
    • pp.65-84
    • /
    • 1998
  • The MBR (Memory Based Reasoning) is a supervised learning method that utilizes the distances among the input and trained patterns in its classification, and is also called a distance based learning algorithm. The MBR is based on the k-NN classifier, in which teaming is performed by simply storing training patterns in the memory without any further processing. This paper proposes a new learning algorithm which is more efficient than the traditional k-NN classifier and has incremental learning capability, Furthermore, our proposed algorithm is insensitive to noisy patterns, and guarantees more efficient memory usage.

  • PDF

Identifying emotion states of users and the related situations under computer environment (컴퓨터 사용자의 감성상태 및 감성유발상황에 관한 연구)

  • 박흥국;임좌상;황민철;이재광
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.11a
    • /
    • pp.67-71
    • /
    • 1999
  • 본 연구는 감성의 객관적 분류기술을 기반으로 인간의 감성을 이해하고 감성의 변화에 능동적으로 반응하는 사용자 중심의 감성컴퓨터를 개발하기 위한 목적으로 진행되었으며, 컴퓨터 사용자를 대상으로 컴퓨터 사용 시에 자주 경험하는 감성상태를 나타내는 어휘와 감성유발상황을 브레인 스토밍과 설문을 통하여 조사하고 분석 및 분류하였다. 컴퓨터 사용자가 컴퓨터를 사용할 때 느끼는 감성상태를 표현하는 어휘는 쾌.불쾌 및 각성.이완의 2 차원적으로 분류하였으며, 컴퓨터 작업환경에서 감성상태를 유발하는 상황도 결과적으로 2 차원적으로 분류되었다. 이는 2 차원적 감성분류알고리즘의 개발과, 특히 부정적 감성을 경감시킬 수 있는 사용자 인터페이스 개발을 위한 기초연구에 활용될 수 있다.

  • PDF

Automatic Bias Classification of Political News Articles by using Morpheme Embedding and SVM (형태소 임베딩과 SVM을 이용한 뉴스 기사 정치적 편향성의 자동 분류)

  • Cho, Dan-Bi;Lee, Hyun-Young;Park, Ji-Hoon;Kang, Seung-Shik
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.451-454
    • /
    • 2020
  • 딥러닝 기술을 이용한 정치적 성향의 편향성 분류를 위하여 신문 뉴스 기사를 수집하고, 머신러닝을 위한 학습 데이터를 구축하였다. 학습 데이터의 구축은 보수 성향과 진보 성향을 대표하는 6개 언론사의 뉴스에서 정치적 성향을 이진 분류 데이터로 구축하였다. 뉴스 기사의 수집 방법으로 최근 이슈들 중에서 정치적 성향과 밀접하게 관련이 있는 키워드 15개를 선정하고 이에 관한 뉴스 기사들을 수집하였다. 그 결과로 11,584개의 학습 및 실험용 데이터를 구축하였으며, 정치적 편향성 분류를 위한 머신러닝 모델을 설계하였다. 머신러닝 기법으로 학습 및 실험을 위해 형태소 단위의 임베딩을 이용하여 문장 및 문서 임베딩으로 확장하였으며, SVM(Support Vector Machine)을 이용하여 정치적 편향성 분류 실험을 수행한 결과로 75%의 정확도를 달성하였다.

Facilitating Web Service Taxonomy Generation : An Artificial Neural Network based Framework, A Prototype Systems, and Evaluation (인공신경망 기반 웹서비스 분류체계 생성 프레임워크의 실증적 평가)

  • Hwang, You-Sub
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.33-54
    • /
    • 2010
  • The World Wide Web is transitioning from being a mere collection of documents that contain useful information toward providing a collection of services that perform useful tasks. The emerging Web service technology has been envisioned as the next technological wave and is expected to play an important role in this recent transformation of the Web. By providing interoperable interface standards for application-to-application communication, Web services can be combined with component based software development to promote application interaction both within and across enterprises. To make Web services for service-oriented computing operational, it is important that Web service repositories not only be well-structured but also provide efficient tools for developers to find reusable Web service components that meet their needs. As the potential of Web services for service-oriented computing is being widely recognized, the demand for effective Web service discovery mechanisms is concomitantly growing. A number of public Web service repositories have been proposed, but the Web service taxonomy generation has not been satisfactorily addressed. Unfortunately, most existing Web service taxonomies are either too rudimentary to be useful or too hard to be maintained. In this paper, we propose a Web service taxonomy generation framework that combines an artificial neural network based clustering techniques with descriptive label generating and leverages the semantics of the XML-based service specification in WSDL documents. We believe that this is one of the first attempts at applying data mining techniques in the Web service discovery domain. We have developed a prototype system based on the proposed framework using an unsupervised artificial neural network and empirically evaluated the proposed approach and tool using real Web service descriptions drawn from operational Web service repositories. We report on some preliminary results demonstrating the efficacy of the proposed approach.

A Study on Classification Model Development of Industry-Efificiency XR Technology and case Analysis (XR 기술 활용 산업-효용성 분류체계 개발 및 응용 사례 분석)

  • SeungMo Yun;ChoonSeong Leem;SeungHyun Ban
    • Journal of Service Research and Studies
    • /
    • v.12 no.4
    • /
    • pp.50-71
    • /
    • 2022
  • After the declaration of the Covid-19 pandemic impacted most of the industries resulting economic fallout. Firms sought for solutions of governments regulations to prevent spread of infectious diseases. This led to demand rise of digital layer and spectrums of virtual reality. Replacing the reality in to virtual and interactions with the digital contents by augmented reality, the consequences were decrement of human-to-human contact. Concerns of Covid-19 and public interests of digital solutions has led to significant amounts of research and developments of Virtual/Augment Reality resulted to driven up new terms of extended reality. However, the uses in industries and the characteristics of the extended reality are currently not defined. In this paper the goal is to define and classify the uses and characteristics of extended reality based on previous researches suggested by research institute. By developing a new classification models of extended realities core technology, uses of industries and utility to analyze trends of extended reality. Two separate classification models of uses of industries and utility will be used as a tool by creating a linkage matrix. The x-axis is divided by utiliy classification model of extended reality. The y-axis are divided into classification model of uses in industries. This matrix will be used as a tool to present a guideline for industry-utility development where extended reality can be served as a service

A Study on the Statistical Analysis of Korea Patent Information (한국특허정보의 통계분석에 관한 연구)

  • Uhm, Dai-Ho;Chang, Young-Bae;Jeong, Eui-Seop
    • Journal of Information Management
    • /
    • v.41 no.3
    • /
    • pp.27-44
    • /
    • 2010
  • Most research about patent data analyzes the trend of technologies using a Patent Map(PM), and suggests the frequencies and trend of patents in a certain topic using tables or graphs in Excel. However, more advanced analysis tools are recently needed to compare the trends among national and international industries. This research discussed why statistical analysis is needed to improve the reliability in PM analysis, and the research compares the trends of patents in Korea between 1990 and 2004 by years, International Patent Classification(IPC) sections, and countries using the frequencies and Poisson regression model. The statistical analysis is also suggested and applied to R&D studies.