Annual Conference on Human and Language Technology
/
2005.10a
/
pp.28-34
/
2005
특허 검색은 수많은 특허 문서 중에서 특정 해당분야의 문서 집합 내에서 검색을 수행하기 때문에 정확한 특허 분류에 크게 의존하게 된다. 이러한 특허 분류의 중요성에 덧붙여, 특허 문서의 수가 빠르게 증가하게 되면서 특허를 자동으로 분류하려는 요구가 더욱 필요하게 되었다. 특허문서는 일반문서와는 달리 구조화되어 있기 때문에 특허분류를 하기 위해서는 이러한 점이 고려되어야 한다. 본 논문에서는 k-NN 방법을 이용하여 일본어 특허 문서를 자동으로 분류하는 방법을 제안한다. 훈련집합으로부터 유사문서를 검색할 때, 구조화되어 있는 특허 문서의 특징을 이용한다. 문서 전체가 아닌 (기존 기술), (응용 분야), (해결하고자 하는 문제), (문제를 해결하려는 방법) 등의 세분화된 요소끼리 비교하여 유사성을 계산한다. 특허 문서에는 사용자가 정의한 많은 의미 요소가 있기 때문에 먼저 이들을 군집화한 후에 이용한다. 실험 결과 제안한 방법이 특허문서를 그대로 이용하는 것보다는 74%, 특허문서에 나타난 <요약>, <청구항>, <상세한 설명>의 큰 구조 정보를 이용하는 것보다는 4%의 성능 향상을 가져왔다.
Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.402-404
/
1998
최근 영상 정보를 저장하는 시스템의 급증으로, 영상의 특징 요소들의 유사성(similarity)에 근거하여 영상을 분류.검색하는 기술에 많은 관심을 보이고 있다. 본 논문에서는 칼라영상의 분류를 위해 기존의 N$\times$M-grams를 변형한 Color N$\times$M-grams를 제안한다. Color N$\times$M-grams는 영상의 칼라정보를 이용하여 영상고유의 구조 정보를 추출한 후 유사성을 측정하여 영상을 분류한다. 제안된 방법의 성능 평가를 위하여 39쌍의 Benchmark 영상을 사용하여 실험하였다. 실험결과, 제안한 Color N$\times$M-grams를 사용한 방법이 기존의 N$\times$M-grams를 사용하여 칼라 영상을 분류하는 방법보다 1순위로 분류되는 비율에 있어서 약 19% 더 좋은 결과를 보였다.
The Journal of Information Technology and Database
/
v.5
no.1
/
pp.69-84
/
1998
본 연구는 정보화 투자효과 평가방법론의 틀을 형성하는 투자효과 분류체계와 측정활동의 모형을 제안하고 있다. 우선 기존에 사용되는 여러 가지 이론적 또는 실무적 투자효과 분류체계의 장단점을 분석한 후 Balanced Scorecard 모형에 의거하여 정보화 투자효과를 재무, 대고객, 내부 프로세스, 혁신과 학습 4가지 영역으로 분류하였다. 이러한 분류체계는 1990년대 정보화 투자가 창출하는 무형적이고 전략적인 효과를 비즈니스 용어와 성과지표로서 적절하게 수용하고 있고, 정보화 투자를 비즈니스 투자와 사업적 관점에서 바라볼 수 있게 한다. 그리고 정보화 투자와 기업성과 사이의 인과관계와 역동적 흐름을 체계적으로 파악할 수 있게 하는 장점이 있다. 이러한 분류체계에 근거하여 투자효과 측정활동은 기업성과지표의 도출, 기업성과지표별 정보화 효과 예측, 그리고 정보화 효과의 화폐가치 산출이라는 3가지 작업으로 구분된다. 본 연구에서는 각 작업별로 어떠한 절차, 방법, 기법들이 사용될 수 있는지를 제안하고 있다.
Proceedings of the Korean Information Science Society Conference
/
2006.06b
/
pp.262-264
/
2006
지문분류는 지문을 전역특징에 따라 미리 정의된 클래스로 분류하는 기술로, 대규모 지문식별시스템의 매칭시간을 감소시키는데 유용하다. 지문은 개인마다 고유하기 때문에 각 지문마다 전역특징이 다양하게 분포하여 기존의 특징추출방법으로는 분류에 한계가 있다. 본 논문에서는 이를 해결하기 위하여 적응적 특징추출방법을 제안하였다. 이는 융선 방향의 변화량을 계산하여 지문의 전역특징을 포함하는 특징영역을 탐색한 뒤, 특징영역의 블록 방향성 정보로부터 특징벡터를 추출한다. NIST4 지문 데이터에 대한 5클래스 분류실험 결과 제안하는 특징추출방법이 90.25%의 분류성능을 보여 기존 방법보다 효과적임을 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2001.10a
/
pp.280-282
/
2001
분자생물학의 급진적 발전은 현대 계통분류학에 큰 변혁을 가져왔다. 특히 유전의 근원물질인 DNA나 RNA를 분리.조작.분석하는 기술의 발전으로 이를 이용만 계통수 제작은 계통생물학의 중요한 실험방법으로 자리잡고 있다. 그 중 염기서열 비교 방법은 현재 유전자 계통수 제작에 가장 널리 이용되는 방법이다. 하지만 이러만 계통수는 각 객체간의 거리만을 표현하고, 객체군간의 차이는 설명하기 힘들다. 본 연구에서는 염기서열의 상대적인 특징(유사도)을 대신하는 염기서열의 총량과 염기 함량 등을 이용해 새로이 분류 기법 중 결정트리 방법에 적응하고, 종 분류의 유전적 모델을 설계한다. 또한 결정트리의 클래스인 종은 상위 클래스들을 포함하고 있어, 본 논문에서는 기존의 결정트리 분류자를 수정한 단계적 결정트기 분류자를 제안한다.
본 논문은 사용자 행동인식을 위해 기존 PSO (Particle Swarm Optimization) 알고리즘의 경계선을 통한 데이터 분류에서 데이터의 수집환경에 의해 발생하는 문제를 벡터의 길이비교를 이용한 보정을 통해 보완한 알고리즘을 제안한다. 기존의 PSO 알고리즘은 데이터 분류를 위해서 데이터의 최소, 최대값을 이용하여 경계를 생성하고, 이를 이용하여 데이터를 분류하였다. 그러나 PSO를 이용하여 행동인식을 할 때 행동이 수집되는 환경에 따라서 경계에 포함되지 못해 행동이 분류되지 못하는 문제가 있다. 이러한 분류의 문제를 보완하기 위해 경계를 벗어난 데이터와 각 행동을 대표하는 데이터의 벡터 길이를 계산하고 최소길이를 비교하여 분류한다. 실험결과, 기존 PSO 방법에 비해 개선된 방법이 평균적으로 앉기 1%, 걷기 7%, 서기 7%의 개선된 결과를 얻었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.224-227
/
2022
객체 분류는 입력으로 주어진 이미지에 포함된 객체의 종류를 판단하는 기술이다. 대표적인 딥러닝 기반의 객체 분류 방법으로서 Faster R-CNN[2], YOLO[3] 등의 모델이 개발되었으나, 여전히 성능 향상의 여지가 있다. 본 연구에서는 각도 마진 손실 함수를 기존의 몇 가지 객채 분류 모델에 적용하여 성능 향상을 유도한다. 각도 마진 손실 함수는 얼굴 인식 모델인 SphereFace [4]에서 제안한 방법으로, 얼굴 인식과 같이 단일 도메인의 데이터셋을 분류하는 문제를 풀기 위해 제안되었다. 이는 기존 소프트맥스 함수에서 클래스 결정 경계선에 마진을 주는 방식으로 클래스 간의 구분 능력을 향상시킨다. 본 논문은 각도 마진 손실 함수를 CIFAR10, CIFAR100 데이터셋의 분류 문제에 적용하였으며 ResNet, EfficientNet, MobileNet 등의 백본 네트워크로 실험하여 평균적으로 mAP 성능이 향상되는 것을 확인하였다.
The rock mass classification systems used in Korea are not standardized. And also the criteria values differ between agencies. So different opinions for rock mass classification can occur among engineers who participate in each design process. In this research, a new rock mass classification system was suggested to correct these problems. For this purpose, the criteria used in the Korean agencies were compared with the criteria used in foreign agencies and standard criteria were selected. Thereafter rational and objective criteria values were suggested quantitatively for the new classification system.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.735-736
/
2021
인터넷에서 댓글 시스템은 자신의 의사표현을 위한 시스템으로 널리 사용되고 있다. 하지만 이를 악용하여 상대방에 대한 혐오를 드러내기도 한다. 악성댓글에 대한 적절한 대처를 위해 빠르고 정확한 탐지는 필수적이다. 본 연구에서는 악성 댓글 분류 문제를 해결하기 위해서 순서가 있는 분류 레이블의 성질을 활용한 순서형 회귀 (Ordinal regression) 기반의 분류 모델을 제안한다. 일반적인 분류 모형과는 달리 혐오 발언 정도에 따라 다중 레이블을 부여하여 학습을 진행하였다. 실험을 통해 Korean Hate Speech Dataset에 대해 LSTM기반의 모형의 출력층을 다르게 구성하여 순서형 회귀 기반의 모형들의 성능을 비교하였다. 결과적으로 예측 결과에 대한 조율이 가능한 순서형 회귀 모형이 일반적인 순서형 회귀 모형에 비해서 편향된 예측에 대해 추가적인 성능 향상을 보였다.
설명가능한 인공지능은 딥러닝과 같은 복잡한 모델에서 어떠한 원리로 해당 결과를 도출해냈는지에 대한 설명을 함으로써 구축된 모델을 이해할 수 있도록 설명하는 기술이다. 최근 여러 분야에서 그래프 형태의 데이터들이 생성되고 있으며, 이들에 대한 분류를 위해 다양한 그래프 신경망들이 사용되고 있다. 본 논문에서는 대표적인 그래프 신경망인 그래프 합성곱 신경망(graph convolutional network, GCN)에 대한 설명 기법을 제안한다. 제안 기법은 주어진 그래프의 각 노드를 GCN을 사용하여 분류했을 때, 각 노드의 어떤 특징들이 분류에 가장 큰 영향을 미쳤는지를 수치로 알려준다. 제안 기법은 최종 분류 결과에 영향을 미친 요소들을 gradient를 통해 단계적으로 추적함으로써 각 노드의 어떤 특징들이 분류에 중요한 역할을 했는지 파악한다. 가상 데이터를 통한 실험을 통해 제안 방법은 분류에 가장 큰 영향을 주는 노드들의 특징들을 실제로 정확히 찾아냄을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.