• Title/Summary/Keyword: 기술 분류

Search Result 6,587, Processing Time 0.036 seconds

Cone Surface Classification and Threshold Value Selection for Description of Complex Objects (복잡한 물체의 기술을 위한 원뿔 표면의 분류 및 임계치 선정)

  • Cho, Dong-Uk;Kim, Ji-Yeong;Bae, Young-Lae;Ko, Il-Seok
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.297-302
    • /
    • 2004
  • In this paper, the 3-D shape description for the objects with the cone ridge and valley surfaces, and the corresponding threshold value selection for surface classification are considered. The existing method based on the mean and Gaussian curvatures(H and K) of differential geometries cannot properly describe cone primitives, which are some of the most common objects in the real world. Also the existing method for surface classification based on the sign values of H and K has Problems in practical applications. For this, cone surface shapes are classified cone ridges and cone valleys are derived from surfaces using the fact that H values are constant case of cylinder surfaces and variable for cone surfaces, respectively. Also threshold value selection for surface classification from a statistical point of view is proposed. The effectiveness of the proposed methods are verified through experiments.

Object Detection and Classification Using Extended Descriptors for Video Surveillance Applications (비디오 감시 응용에서 확장된 기술자를 이용한 물체 검출과 분류)

  • Islam, Mohammad Khairul;Jahan, Farah;Min, Jae-Hong;Baek, Joong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.12-20
    • /
    • 2011
  • In this paper, we propose an efficient object detection and classification algorithm for video surveillance applications. Previous researches mainly concentrated either on object detection or classification using particular type of feature e.g., Scale Invariant Feature Transform (SIFT) or Speeded Up Robust Feature (SURF) etc. In this paper we propose an algorithm that mutually performs object detection and classification. We combinedly use heterogeneous types of features such as texture and color distribution from local patches to increase object detection and classification rates. We perform object detection using spatial clustering on interest points, and use Bag of Words model and Naive Bayes classifier respectively for image representation and classification. Experimental results show that our combined feature is better than the individual local descriptor in object classification rate.

Coupled data classification method using unsupervised learning and fuzzy logic in Cloud computing environment (클라우드 컴퓨팅 환경에서 무감독학습 방법과 퍼지이론을 이용한 결합형 데이터 분류기법)

  • Cho, Kyu-Cheol;Kim, Jae-Kwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.11-18
    • /
    • 2014
  • In This paper, we propose the unsupervised learning and fuzzy logic-based coupled data classification method base on ART. The unsupervised learning-based data classification helps improve the grouping technique, but decreases the processing efficiency. However, the data classification requires the decision technique to induce high success rate of data classification with optimal threshold. Therefore it is also necessary to solve the uncertainty of the threshold decision. The proposed method deduces the optimal threshold with the designing of fuzzy parameter and rules. In order to evaluate the proposed method, we design the simulation model with the GPCR(G protein coupled receptor) data in cloud computing environment. Simulation results verify the efficiency of our method with the high recognition rate and low processing time.

Text Document Classification Scheme using TF-IDF and Naïve Bayes Classifier (TF-IDF와 Naïve Bayes 분류기를 활용한 문서 분류 기법)

  • Yoo, Jong-Yeol;Hyun, Sang-Hyun;Yang, Dong-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.242-245
    • /
    • 2015
  • Recently due to large-scale data spread in digital economy, the era of big data is coming. Through big data, unstructured text data consisting of technical text document, confidential document, false information documents are experiencing serious problems in the runoff. To prevent this, the need of art to sort and process the document consisting of unstructured text data has increased. In this paper, we propose a novel text classification scheme which learns some data sets and correctly classifies unstructured text data into two different categories, True and False. For the performance evaluation, we implement our proposed scheme using $Na{\ddot{i}}ve$ Bayes document classifier and TF-IDF modules in Python library, and compare it with the existing document classifier.

  • PDF

Estimated Soft Information based Most Probable Classification Scheme for Sorting Metal Scraps with Laser-induced Breakdown Spectroscopy (레이저유도 플라즈마 분광법을 이용한 폐금속 분류를 위한 추정 연성정보 기반의 최빈 분류 기술)

  • Kim, Eden;Jang, Hyemin;Shin, Sungho;Jeong, Sungho;Hwang, Euiseok
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.84-91
    • /
    • 2018
  • In this study, a novel soft information based most probable classification scheme is proposed for sorting recyclable metal alloys with laser induced breakdown spectroscopy (LIBS). Regression analysis with LIBS captured spectrums for estimating concentrations of common elements can be efficient for classifying unknown arbitrary metal alloys, even when that particular alloy is not included for training. Therefore, partial least square regression (PLSR) is employed in the proposed scheme, where spectrums of the certified reference materials (CRMs) are used for training. With the PLSR model, the concentrations of the test spectrum are estimated independently and are compared to those of CRMs for finding out the most probable class. Then, joint soft information can be obtained by assuming multi-variate normal (MVN) distribution, which enables to account the probability measure or a prior information and improves classification performance. For evaluating the proposed schemes, MVN soft information is evaluated based on PLSR of LIBS captured spectrums of 9 metal CRMs, and tested for classifying unknown metal alloys. Furthermore, the likelihood is evaluated with the radar chart to effectively visualize and search the most probable class among the candidates. By the leave-one-out cross validation tests, the proposed scheme is not only showing improved classification accuracies but also helpful for adaptive post-processing to correct the mis-classifications.

A Study on the Prediction of Rock Classification Using Shield TBM Data and Machine Learning Classification Algorithms (쉴드 TBM 데이터와 머신러닝 분류 알고리즘을 이용한 암반 분류 예측에 관한 연구)

  • Kang, Tae-Ho;Choi, Soon-Wook;Lee, Chulho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.494-507
    • /
    • 2021
  • With the increasing use of TBM, research has recently been conducted in Korea to analyze TBM data with machine learning techniques to predict the ground in front of TBM, predict the exchange cycle of disk cutters, and predict the advance rate of TBM. In this study, classification prediction of rock characteristics of slurry shield TBM sites was made by combining traditional rock classification techniques and machine learning techniques widely used in various fields with machine data during TBM excavation. The items of rock characteristic classification criteria were set as RQD, uniaxial compression strength, and elastic wave speed, and the rock conditions for each item were classified into three classes: class 0 (good), 1 (normal), and 2 (poor), and machine learning was performed on six class algorithms. As a result, the ensemble model showed good performance, and the LigthtGBM model, which showed excellent results in learning speed as well as learning performance, was found to be optimal in the target site ground. Using the classification model for the three rock characteristics set in this study, it is believed that it will be possible to provide rock conditions for sections where ground information is not provided, which will help during excavation work.

A Scheme to Categorize Ubiquitous Sensor Network Services and Their Practical Issues (유비쿼터스 센서네트워크 서비스 분류 기법 및 상용화 이슈)

  • Eun, Seongbae;So, Sun Sup;Chae, Yigeun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.3
    • /
    • pp.202-208
    • /
    • 2007
  • Recently, a lot of research have been studied to apply wireless sensor networks to USN applications. The characteristics of USN applications is that they are varied according to the sort of sensors and sensing objects. They includes military applications, water pollusion monitoring, intelligent traffic system, farm, logistics, location position applications, and so on. There is no traditional method to classify these applications. In this paper, we propose a taxonomy scheme to classify USN applications. The criteria is based on 3 properties, the criticalness of services, the mobility of sensing entity, and the mobility of sensed objects, to classify them into 8 groups. We also describe the technical issues and related works in them. Our taxonomy can make USN applications to be easily understood and memorized.

  • PDF

A Comparative Study on Feature Selection and Classification Methods Using Closed Frequent Patterns Mining (닫힌 빈발 패턴을 기반으로 한 특징 선택과 분류방법 비교)

  • Zhang, Lei;Jin, Cheng Hao;Ryu, Keun Ho
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.148-151
    • /
    • 2010
  • 분류 기법은 데이터 마이닝 기술 중 가장 잘 알려진 방법으로서, Decision tree, SVM(Support Vector Machine), ANN(Artificial Neural Network) 등 기법을 포함한다. 분류 기법은 이미 알려진 상호 배반적인 몇 개 그룹에 속하는 다변량 관측치로부터 각각의 그룹이 어떤 특징을 가지고 있는지 분류 모델을 만들고, 소속 그룹이 알려지지 않은 새로운 관측치가 어떤 그룹에 분류될 것인가를 결정하는 분석 방법이다. 분류기법을 수행할 때에 기본적으로 특징 공간이 잘 표현되어 있다고 가정한다. 그러나 실제 응용에서는 단일 특징으로 구성된 특징공간이 분명하지 않기 때문에 분류를 잘 수행하지 못하는 문제점이 있다. 본 논문에서는 이 문제에 대한 해결방안으로써 많은 정보를 포함하면서 빈발패턴에 대한 정보의 순실이 없는 닫힌 빈발패턴 기반 분류에 대한 연구를 진행하였다. 본 실험에서는 ${\chi}^2$(Chi-square)과 정보이득(Information Gain) 속성 선택 척도를 사용하여 의미있는 특징 선택을 수행하였다. 그 결과, 이 연구에서 제시한 척도를 사용하여 특징 선택을 수행한 경우, C4.5, SVM 과 같은 분류기법보다 더 향상된 분류 성능을 보였다.

A Study on the Relationship between Class Similarity and the Performance of Hierarchical Classification Method in a Text Document Classification Problem (텍스트 문서 분류에서 범주간 유사도와 계층적 분류 방법의 성과 관계 연구)

  • Jang, Soojung;Min, Daiki
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.3
    • /
    • pp.77-93
    • /
    • 2020
  • The literature has reported that hierarchical classification methods generally outperform the flat classification methods for a multi-class document classification problem. Unlike the literature that has constructed a class hierarchy, this paper evaluates the performance of hierarchical and flat classification methods under a situation where the class hierarchy is predefined. We conducted numerical evaluations for two data sets; research papers on climate change adaptation technologies in water sector and 20NewsGroup open data set. The evaluation results show that the hierarchical classification method outperforms the flat classification methods under a certain condition, which differs from the literature. The performance of hierarchical classification method over flat classification method depends on class similarities at levels in the class structure. More importantly, the hierarchical classification method works better when the upper level similarity is less that the lower level similarity.