• Title/Summary/Keyword: 기술 분류

Search Result 6,587, Processing Time 0.036 seconds

Hybrid Approach Combining Deep Learning and Rule-Based Model for Automatic IPC Classification of Patent Documents (딥러닝-규칙기반 병행 모델을 이용한 특허문서의 자동 IPC 분류 방법)

  • Kim, Yongil;Oh, Yuri;Sim, Woochul;Ko, Bongsoo;Lee, Bonggun
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.347-350
    • /
    • 2019
  • 인공지능 관련 기술의 발달로 다양한 분야에서 인공지능 활용에 대한 관심이 고조되고 있으며 전문영역에서도 기계학습 기법을 활용한 연구들이 활발하게 이루어지고 있다. 특허청에서는 분야별 전문지식을 가진 분류담당자가 출원되는 모든 특허에 국제특허분류코드(이하 IPC) 부여 작업을 수행하고 있다. IPC 분류와 같은 전문적인 업무영역에서 딥러닝을 활용한 자동 IPC 분류 서비스를 제공하기 위해서는 기계학습을 이용하는 분류 모델에 분야별 전문지식을 직관적으로 반영하는 것이 필요하다. 이를 위해 본 연구에서는 딥러닝 기반의 IPC 분류 모델과 전문지식이 반영된 분류별 어휘사전을 활용한 규칙기반 분류 모델을 병행하여 특허문서의 IPC분류를 자동으로 추천하는 방법을 제안한다.

  • PDF

Emotion Transition Model based Music Classification Scheme for Music Recommendation (음악 추천을 위한 감정 전이 모델 기반의 음악 분류 기법)

  • Han, Byeong-Jun;Hwang, Een-Jun
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.159-166
    • /
    • 2009
  • So far, many researches have been done to retrieve music information using static classification descriptors such as genre and mood. Since static classification descriptors are based on diverse content-based musical features, they are effective in retrieving similar music in terms of such features. However, human emotion or mood transition triggered by music enables more effective and sophisticated query in music retrieval. So far, few works have been done to evaluate the effect of human mood transition by music. Using formal representation of such mood transitions, we can provide personalized service more effectively in the new applications such as music recommendation. In this paper, we first propose our Emotion State Transition Model (ESTM) for describing human mood transition by music and then describe a music classification and recommendation scheme based on the ESTM. In the experiment, diverse content-based features were extracted from music clips, dimensionally reduced by NMF (Non-negative Matrix Factorization, and classified by SVM (Support Vector Machine). In the performance analysis, we achieved average accuracy 67.54% and maximum accuracy 87.78%.

  • PDF

DNN based Binary Classification Model by Particular Matter Concentration (DNN 기반의 미세먼지 농도별 이진 분류 모델)

  • Lee, Jong-sung;Jung, Yong-jin;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.277-279
    • /
    • 2021
  • There is a problem that learning of a prediction model is not well performed depending on the characteristics of each particular matter concentration. To solve this problem, it is necessary to design a prediction model for low concentration and high concentration separately. Therefore, a classification model is needed to classify the concentration of particular matter into low and high concentrations. This paper proposes a classification model to classify low and high concentrations based on the concentration of particular matter. DNN was used as the classification model algorithm, and the classification model was designed by applying the optimal parameters after searching for hyper parameters. As for the result of evaluating the performance of the model, 97.54% of the low concentration classification was measured. And in the case of high concentration classification, 85.51% was measured.

  • PDF

A R&D strategies for development using structured association map (구조화된 연관맵을 이용한 연구개발 전략 수립)

  • Song, Wonho;Lee, Junseok;Park, Sangsung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.190-195
    • /
    • 2016
  • A technology is continuously developed in a rapidly changing global market. A company requires an appropriate R&D strategy for adapting to this environment. That is, the technologies owned by the company needs to be thoroughly analyzed to improve its competitiveness. Alternatively, technology classification using IPC codes is carried out recently in an objective and quantitative way. International Patent Classification, IPC is an internationally specified classification system, so it is helpful to conduct an objective and quantitative patent analysis of technology. In this study, all of the patents owned by company C are investigated and a matrix representing IPC codes of each patent is created. Then, a structured association map of the patents is made through association rules mining based on Confidence. The association map can be used to inspect the current situation of a company about patents. It also allows highly associated technologies to be clustered. Using the association map, this study analyzes the technologies of company C and how it changes with time. The strategy for future technologies is established based on the result.

A Study on Improving Performance of Software Requirements Classification Models by Handling Imbalanced Data (불균형 데이터 처리를 통한 소프트웨어 요구사항 분류 모델의 성능 개선에 관한 연구)

  • Jong-Woo Choi;Young-Jun Lee;Chae-Gyun Lim;Ho-Jin Choi
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.7
    • /
    • pp.295-302
    • /
    • 2023
  • Software requirements written in natural language may have different meanings from the stakeholders' viewpoint. When designing an architecture based on quality attributes, it is necessary to accurately classify quality attribute requirements because the efficient design is possible only when appropriate architectural tactics for each quality attribute are selected. As a result, although many natural language processing models have been studied for the classification of requirements, which is a high-cost task, few topics improve classification performance with the imbalanced quality attribute datasets. In this study, we first show that the classification model can automatically classify the Korean requirement dataset through experiments. Based on these results, we explain that data augmentation through EDA(Easy Data Augmentation) techniques and undersampling strategies can improve the imbalance of quality attribute datasets, and show that they are effective in classifying requirements. The results improved by 5.24%p on F1-score, indicating that handling imbalanced data helps classify Korean requirements of classification models. Furthermore, detailed experiments of EDA illustrate operations that help improve classification performance.

군집분석을 이용한 새로운 IS 실무자 분류 체계에 관한 연구

  • Gyeong, Won-Hyeon;Go, Seok-Ha
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2006.06a
    • /
    • pp.573-601
    • /
    • 2006
  • IS 실무자들은 과거처럼 단순한 시스템 분석이나 프로그래밍 기법만을 갖추는 것만으로는 조직이 원하는 정보기술을 효과적으로 운용하는 것이 어렵게 되고 있다. 예전과는 달리 최근의 기업에서는 통신 시스템을 포함하는 다양한 정보기술에 관련된 지식과 기술을 전문적으로 다룰 수 있는 전문가를 원하는 추세이다. 이러한 맥락에서 IS 실무자들이 자신의 업무를 성공적으로 수행하기 위해 필요한 전문 지식과 기술은 무엇인가라는 질문에 대한 대답을 알 수 있어야만 한다. 본 연구는 IS 실무자들이 그들이 직면하고 있는 ‘IS 지식과 기술의 빠른 변화’를 얼마만큼 인식하고 있으며, 그들이 필요로 하는 지식과 기술과 업무를 수행함에 있어 필수적인 지식과 기술을 얼마만 큼 보유하고 있는지를 조사하였다. 본 연구에서는 조사된 자료를 통하여, 기존의 국내외의 문화에서 밝혀진 인구 통계학적 분류기준 (예를 들자면, 경력 수준, 지역, 직종) 이외에 이들을 분류할 수 있는 기준에는 어떠한 것이 있는가에 대한 연구를 수행하였다. 분석을 위하여 실무자들이 현업에서 많은 시간과 노력을 들이고 있는 IS 활동영역에 대한 투자시간을 기준으로 실무자들을 분류하였다. 분석에서는 조사자의 군집분석과 다차원 분석을 통하여 분류된 실무자 그룹에 대한 여러 가지 기술적인 특성과, 인구 통계학적 특성을 파악하고, 그룹들에 대하여 새로운 분류에 적합한 표기를 제시하고자 하였다. 본 논문은 정보시스템 영역에서 수행된 IS 실무자들에 다양한 연구의 한 부분으로서, 기업 환경, 조직 환경, 나아가 실무자들의 직무환경의 개선에 필요한 지식과 기술을 제공할 것이다.아날로그 방식에서 IT 기반에 의한 디지털 환경으로 변화되고 있다. 또한 e러닝, T러닝, m러닝, u러닝 등의 용어가 생성되고 있다.키지에어컨에서 사용되고 있는 밀폐형 압축기에 대해서 그림 2에서 나타내고 있는 냉방능력 10tons(120,000Btu/h) 이하를 중심으로 상기의 최근 기술 동향을 간략하게 소개하고자 한다.질표준의 지표성분으로 간주되는 진세노사이드의 절대함량과 그 성분조성 차이에 따른 임상효과의 차별성이 있는지에 대한 검토와, 특히 최근 실험적으로 밝혀지고 있는 사포닌 성분의 장내 세균에 의한 생물전환체의 인체 실험을 통한 효과 검정이 필요하다. 나아가서는 적정 복용량의 설정과 이와 관련되는 생체내 동태 및 생체이용율(bioavilability)에 관한 정보가 거의 없으므로 이것도 금후 검토해야 할 과제로 사료된다. 인삼은 전통약물로서 오랜 역사성과 그동안의 연구결과에 의한 과학성을 가지고 있으므로 건강유지와 병의 예방 및 회복촉진을 위한 보조요법제 또는 기능성 식품으로써의 유용성이 있는 것으로 판단된다. 앞으로 인삼의 활용성 증대를 위해서는 보다 과학적인 임상평가에 의한 안전성 및 유효성 입증과 제품의 엄격한 품질관리의 필요성이 더욱 강조되어야 할 것이다.xyl radical 생성 억제 효과를 보여 주었다. 본 실험을 통하여 BHT 를 제외하고 전반적으로 세포 수준에서의 oxidative stress 에 대한 억제 효과를 확인해 볼 수 있었으며 특히 수용성 항산화제들에서 두드러진 효과를 보여 주었다. 제공하여 내수기반 확충에도 노력해야 할 것 이다.있었다., 인삼이 성장될 때 부분적인 영양상태의

  • PDF

A study on the Patent Information Analysis on Electronic Commerce(G06Q) based on the International Patent Classification (IPC) Code (국제특허분류(IPC) 코드 기반 전자상거래(G06Q) 분야 특허 정보 분석에 관한 연구)

  • Shim, Jaeruen
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1499-1505
    • /
    • 2015
  • This study is about the patent information analysis of relevant companies and technologies based on International Patent Classification (IPC) code. 902 patent applications in the field of electronic commerce(G06Q) by NAVER, the biggest internet company in Korea, are the subjects of this study. First, we investigated the number of applications and registrations per IPC code so that we could analyze the core technology areas and the status of patent application. In addition, we examined the convergence of technologies by investigating interconnections between main and sub categories of IPC codes. Lastly, we looked into the changes in patent technologies by investigating the status of application per IPC code in accordance with year. By analyzing the IPC code based patent information used in this study, we could further expect the trends of companies and technologies.

Rule Discovery for Cancer Classification using Genetic Programming based on Arithmetic Operators (산술 연산자 기반 유전자 프로그래밍을 이용한 암 분류 규칙 발견)

  • 홍진혁;조성배
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.999-1009
    • /
    • 2004
  • As a new approach to the diagnosis of cancers, bioinformatics attracts great interest these days. Machine teaming techniques have produced valuable results, but the field of medicine requires not only highly accurate classifiers but also the effective analysis and interpretation of them. Since gene expression data in bioinformatics consist of tens of thousands of features, it is nearly impossible to represent their relations directly. In this paper, we propose a method composed of a feature selection method and genetic programming. Rank-based feature selection is adopted to select useful features and genetic programming based arithmetic operators is used to generate classification rules with features selected. Experimental results on Lymphoma cancer dataset, in which the proposed method obtained 96.6% test accuracy as well as useful classification rules, have shown the validity of the proposed method.

$\emph{A Priori}$ and the Local Font Classification (연역적이고 국부적인 영문자의 폰트 분류법)

  • 정민철
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.4
    • /
    • pp.245-250
    • /
    • 2002
  • This paper presents a priori and the local font classification method. The font classification uses ascenders, descenders, and serifs extracted from a word image. The gradient features of those sub-images are extracted, and used as an input to a neural network classifier to produce font classification results. The font classification determines 2-font styles (upright or slant), 3-font groups (serif, sans serif, or typewriter), and 7-font names (PostScript fonts such as Avant Garde, Helvetica, Bookman, New Century Schoolbook, Palatino, Times, or Courier). The proposed a priori and local font classification method allows an OCR system consisting of various font-specific character segmentation tools and various mono-font character recognizers.

  • PDF

A Comparison Study on Back-Propagation Neural Network and Support Vector Machines for the Image Classification Problems (영상분류문제를 위한 역전파 신경망과 Support Vector Machines의 비교 연구)

  • Seo, Kwang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1889-1893
    • /
    • 2008
  • This paper explores the classification performance of applying to support vector machines (SVMs) for the image classification problems. In this study, we extract the color, texture and shape features of natural images and compare the performance of image classification using each individual feature and integrated features. The experiment results show that classification accuracy on the basis of color feature is better than that based on texture and shape features and the results of the integrating features also provides a better and more robust performance than individual feature. In additions, we show that the proposed classifier of SVM based approach outperforms BPNN to corporate the image classification problems.