References
- A. Ben-Dor, et al., 'Tissue classification with gene expression profiles,' Journal of Computational Biology, vol. 7, pp. 559-584, 2000 https://doi.org/10.1089/106652700750050943
- A. Brazma and J. Vilo, 'Gene expression data analysis,' Federation of European Biochemical Societies Letters, vol. 480, pp. 17-24, 2000 https://doi.org/10.1016/S0014-5793(00)01772-5
- C. Park and S.-B. Cho, 'Genetic search for optimal ensemble of feature-classifier pairs in DNA gene expression profiles,' Int. Joint Conf. on Neural Networks, pp. 1702-1707, 2003 https://doi.org/10.1109/IJCNN.2003.1223663
- K. Tan, et al., 'Evolutionary computing for knowledge discovery in medical diagnosis,' Artificial Intelligence in Medicine, vol. 27, no. 2, pp. 129-154, 2003 https://doi.org/10.1016/S0933-3657(03)00002-2
- J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993
- D. Goldberg, Genetic Algorithms in Search, Optimaization, and Machine Learning, Addison-Wesley, 1989
- K. DeJong, et al., 'Using genetic algorithms for concept learning, vol. 13, pp. 161-188, 1993 https://doi.org/10.1023/A:1022617912649
- A. Freitas, 'A survey of evolutionary algorithms for data mining and knowledge discovery,' 'Advances in Evolutionary Computation, pp. 819-845, 2002
- C. Hsu and C. Knoblock, 'Discovering robust knowledge from databases that change', Data Mining and Knowledge Discovery, vol. 2, no. 1, pp. 69-95, 1998 https://doi.org/10.1023/A:1009717820785
- C. Zhou et al., 'Discovery of classification rules by using gene expression programming,' Proc. of the 2002 Int. Conf. on Artificial Intelligence, pp. 1355-1361, 2002
- C. Bojarczuk, et al., 'Discovering comprehensible classification rules using genetic programming: A case study in a medical domain,' Proc. of the Genetic and Evolutionary Computation Conf., pp. 953-958, 1999
- I. Falco, et al., 'Discovering interesting classification rules with genetic programming,' Applied Soft Computing, vol. 1, no. 4, pp. 257-269, 2002 https://doi.org/10.1016/S1568-4946(01)00024-2
- J. Koza, 'Genetic programming,' Encyclopedia of Computer Science and Technology, vol. 39, pp. 29-43, 1998
- J. Kishore, et al., 'Application of genetic programming for multicategory pattern classification,' IEEE Transactions of Evolutionary Computation, vol. 4, no. 3, pp. 242-258, 2000 https://doi.org/10.1109/4235.873235
- H.-H. Won and S.-B. Cho, 'Neural network ensemble with negatively correlated features for cancer classfication,' Lecture Notes in Computer Science, vol. 2714, pp. 1143-1150, 2003 https://doi.org/10.1007/3-540-44989-2_136
- J. Bins and B. Draper, 'Feature selection from huge feature sets,' Proc. Int. Conf. Computer Vision 2, pp. 159-165, 2001 https://doi.org/10.1109/ICCV.2001.937619
- S. Augier, et al., 'Learning first order logic rules with a genetic algorithm,' Proc. of the First Int. Conf. on Knowledge Discovery & Data Mining, AAAI Press, 1995
- A. Alizadeh, et al., 'Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling,' Nature, vol. 403, pp. 503-511, 2000 https://doi.org/10.1038/35000501
- O. Monni, et al., 'BCL2 overexpression in diffuse large B-cell lymphoma', Leuk Lymphoma, vol. 34, no. 1-2, pp. 45-52, 1999 https://doi.org/10.3109/10428199909083379
-
P. Koni and R. Flavell, 'A role for tumor necrosis factor receptor type 1 in gut-associated lymphoid tissue development: genetic evidence of synergism with lymphotoxin
${\beta}$ ,' J. of Experimental Medicine, vol. 187, no. 12,pp. 1977-1983, 1998 https://doi.org/10.1084/jem.187.12.1977 - Data mining tools See5, http://www.rulequest.com/see5-info.html