Recently, as the ICT field has been used in various environments, it has become possible to analyze pests by crops, use robots when harvesting crops, and predict by big data by utilizing ICT technologies in a sustainable agricultural environment. However, in a sustainable agricultural environment, efforts to solve resource depletion, agricultural population decline, poverty increase, and environmental destruction are constantly being demanded. This paper proposes an artificial intelligence-based big data processing analysis method to reduce the production cost and increase the efficiency of crops based on a sustainable agricultural environment. The proposed technique strengthens the security and reliability of data by processing big data of crops combined with AI, and enables better decision-making and business value extraction. It can lead to innovative changes in various industries and fields and promote the development of data-oriented business models. During the experiment, the proposed technique gave an accurate answer to only a small amount of data, and at a farm site where it is difficult to tag the correct answer one by one, the performance similar to that of learning with a large amount of correct answer data (with an error rate within 0.05) was found.
As technology evolves, Internet usage continues to grow, resulting in a geometric increase in network traffic and communication volumes. The network path selection process, which is one of the core elements of the Internet, is becoming more complex and advanced as a result, and it is important to effectively manage and analyze it, and there is a need for a representation and visualization method that can be intuitively understood. To this end, this study designs a framework that analyzes network data using BGP, a network path selection method, and applies it to the cyber common operating picture for situational awareness. After that, we analyze the visualization elements required to visualize the information and conduct an experiment to implement a simple visualization. Based on the data collected and preprocessed in the experiment, the visualization screens implemented help commanders or security personnel to effectively understand the network situation and take command and control.
Seonghwan Park;Minseok Kim;Eunseo Baek;Junghoon Park
Smart Media Journal
/
v.12
no.11
/
pp.36-47
/
2023
Industrial Control System(ICS), which controls facilities at major industrial sites, is increasingly connected to other systems through networks. With this integration and the development of intelligent attacks that can lead to a single external intrusion as a whole system paralysis, the risk and impact of security on industrial control systems are increasing. As a result, research on how to protect and detect cyber attacks is actively underway, and deep learning models in the form of unsupervised learning have achieved a lot, and many abnormal detection technologies based on deep learning are being introduced. In this study, we emphasize the application of preprocessing methodologies to enhance the anomaly detection performance of deep learning models on time series data. The results demonstrate the effectiveness of a Wavelet Transform (WT)-based noise reduction methodology as a preprocessing technique for deep learning-based anomaly detection. Particularly, by incorporating sensor characteristics through clustering, the differential application of the Dual-Tree Complex Wavelet Transform proves to be the most effective approach in improving the detection performance of cyber attacks.
Journal of Korea Society of Industrial Information Systems
/
v.29
no.4
/
pp.35-42
/
2024
In this study, we propose a method for real-time recognition and analysis of dog behavior using a motion sensor and deep learning techonology. The existing home CCTV (Closed-Circuit Television) that recognizes dog behavior has privacy and security issues, so there is a need for new technologies to overcome them. In this paper, we propose a system that can analyze and care for a dog's behavior based on the data measured by the motion sensor. The study compares the MLP (Multi-Layer Perceptron) and CNN (Convolutional Neural Network) models to find the optimal model for dog behavior analysis, and the final model, which has an accuracy of about 82.19%, is selected. The model is lightened to confirm its potential for use in embedded environments.
The Journal of Korean Institute of Communications and Information Sciences
/
v.38C
no.3
/
pp.278-287
/
2013
Modern information technologies continue to provide industries with new and improved methods. With the rapid development of Machine to Machine (M2M) communication, a smart container supply chain management is formed based on high performance sensors, computer vision, Global Positioning System (GPS) satellites, and Globle System for Mobile (GSM) communication. Existing supply chain management has limitation to real time container tracking. This paper focuses on the studies and implementation of real time container chain management with the development of the container identification system and automatic alert system for interrupts and for normal periodical alerts. The concept and methods of smart container modeling are introduced together with the structure explained prior to the implementation of smart container tracking alert system. Firstly, the paper introduces the container code identification and recognition algorithm implemented in visual studio 2010 with Opencv (computer vision library) and Tesseract (OCR engine) for real time operation. Secondly it discusses the current automatic alert system provided for real time container tracking and the limitations of those systems. Finally the paper summarizes the challenges and the possibilities for the future work for real time container tracking solutions with the ubiquitous mobile and satellite network together with the high performance sensors and computer vision. All of those components combine to provide an excellent delivery of supply chain management with outstanding operation and security.
Face Detection can be defined as follows : Given a digitalized arbitrary or image sequence, the goal of face detection is to determine whether or not there is any human face in the image, and if present, return its location, direction, size, and so on. This technique is based on many applications such face recognition facial expression, head gesture and so on, and is one of important qualify factors. But face in an given image is considerably difficult because facial expression, pose, facial size, light conditions and so on change the overall appearance of faces, thereby making it difficult to detect them rapidly and exactly. Therefore, this paper proposes fast and exact face detection which overcomes some restrictions by using neural network. The proposed system can be face detection irrelevant to facial expression, background and pose rapidily. For this. face detection is performed by neural network and detection response time is shortened by reducing search region and decreasing calculation time of neural network. Reduced search region is accomplished by using skin color segment and frame difference. And neural network calculation time is decreased by reducing input vector sire of neural network. Principle Component Analysis (PCA) can reduce the dimension of data. Also, pose estimates in extracted facial image and eye region is located. This result enables to us more informations about face. The experiment measured success rate and process time using the Squared Mahalanobis distance. Both of still images and sequence images was experimented and in case of skin color segment, the result shows different success rate whether or not camera setting. Pose estimation experiments was carried out under same conditions and existence or nonexistence glasses shows different result in eye region detection. The experiment results show satisfactory detection rate and process time for real time system.
Though biometrics to authenticate a person is a good tool in terms of security and convenience, typical authentication algorithms using biometrics may not be executed on resource-constrained devices such as smart cards. Thus, to execute biometric processing on resource-constrained devices, it is desirable to develop lightweight authentication algorithm that requires only small amount of memory and computation. Also, among biological features, face is one of the most acceptable biometrics, because humans use it in their visual interactions and acquiring face images is non-intrusive. We present a new face authentication algorithm in this paper. Our achievement is two-fold. One is to present a face authentication algorithm with low memory requirement, which uses support vector machines (SVM) with the feature set extracted by genetic algorithms (GA). The other contribution is to suggest a method to reduce further, if needed, the amount of memory required in the authentication at the expense of verification rate by changing a controllable system parameter for a feature set size. Given a pre-defined amount of memory, this capability is quite effective to mount our algorithm on memory-constrained devices. The experimental results on various databases show that our face authentication algorithm with SVM whose input vectors consist of discriminating features extracted by GA has much better performance than the algorithm without feature selection process by GA has, in terms of accuracy and memory requirement. Experiment also shows that the number of the feature ttl be selected is controllable by a system parameter.
본 연구는 2008년 맞춤형 방문건강관리사업에 사용되고 있는 관절통증을 중심으로 한 사례관리를 수정 보안하여 우리나라 실정에 맞는 관절통증 사례관리 프로그램을 개발, 제안하며, 맞춤형 방문건강 관리사업의 활성화와 완성도를 높이는데 있다. 연구방법으로는 2007년 전국 12주 관절통증 사례관리 결과자료 분석하고, 전국 253개 보건소의 맞춤형 방문건강관리사업 인력에 대한 자료 분석과 전국 보건소 전문가 자문회의와 토론 결과를 통해 설문지를 수정 보완하여 2008년도 충청남도 관절통증 12주 사례관리를 실시하였다. 자료분석은 SPSS 12.0 통계 프로그램을 이용하여, p-value가 0.05 미만과 0.01미만인 경우를 통계적으로 유의한 것으로 판정하였으며, 전국자료는 빈도분석, wilcoxon 부호순위 검정과 McNemar's 검정을 실시하였으며, 12주의 관절통증 사례관리의 연구기간동안 수집된 자료를 1주와 8주간, 1주와 12주간, 8주와 12주간을 paired t-test 검정과 McNemar's 검정을 실시하여 유의성 평가를 실시하였다. 연구결과는 다음과 같다. 12주 기간 동안 사전 사례관리 방문간호사의 교육을 통한 사례관리 서비스의 강도의 조절 및 매주로 서비스의 횟수를 조절하여 사례관리를 실시한 결과 총 109개 항목에서 1주와 8주간에 유의한 항목은 TG(mg/dl)를 비롯한 51개 항목, 1주와 12주간에는 콜레스테롤(mg/dl)을 비롯한 53개 항목, 8주와 12주간에는 지난 48시간동안 관절통증 점수를 비롯한 3개 항목으로 유의한 차이를 볼 수 있었으며, 1주와 8주간은 유의하나 1주와 12주간은 유의하지 않게 나타나는 항목은 TG(mg/dl)를 비롯한 3개 항목, 1주와 8주간은 유의하지 않다가 1주와 12주간은 유의하게 나타나는 항목은 콜레스테롤(mg/dl)를 비롯한 6개 항목, 1주, 8주, 12주간의 모든 기간에서 유의한 항목은 지난 48 시간동안 관절통증 점수를 비롯한 3개 항목으로 조사되었다. 결론적으로 현재 우리나라에서 추진되고 있는 맞춤형 방문건강관리 사업의 사업지침에 대한 보완을 위해 관절통증사례관리 프로그램에 있어 중재 서비스 또는 프로그램의 기간은 12주간에서 8주간으로 조정 되어야 하며, 추가가 필요한 항목으로는 교육, 자기역량 강화, 운동처방, 물리치료, 약물치료, 대체요법, 식이, 영양, 생활지도 등이며, 어골도 분석을 위한 기본 틀 및 주요 구성요소를 제시 및 기여 요인 및 결정요인을 위한 논리적 모형 제시가 필요하며, 개선목표를 위한 유지증진 및 관리능력, 지기 관리 수행도 개선과 대상자별 맞춤형 사례관리를 위한 표준화된 행동 체크리스트 제작 보급 및 사례별 운동, 물리치료 지도 방법 계획 수립에 대한 인력 충원이 필요하다.
Yun, Jong-Hyeon;Lee, Seok-Jae;Jang, Su-Min;Yoo, Jae-Soo;Kim, Hong-Yeon;Kim, Jun
Journal of KIISE:Computer Systems and Theory
/
v.35
no.1
/
pp.1-17
/
2008
Recently, the object based storage devices systems(OSDs) have been actively researched. They are different from existing block based storage systems(BSDs) in terms of the storage unit. The storage unit of the OSDs is an object that includes the access methods, the attributes of data, the security information, and so on. The object has no size limit and no influence on the internal storage structures. Therefore, the OSDs improve the I/O throughput and the scalability. But the backup systems for the OSDs still use the existing backup techniques for the BSDs. As a result, they need much backup time and do not utilize the characteristics of the OSDs. In this paper, we design and implement a new object based backup system that utilizes the features of the OSDs. Our backup system significantly improves the backup time over existing backup systems because the raw objects are directly transferred to the backup devices in our system. It also restores the backup data much faster than the existing systems when system failures occur. In addition, it supports various types of backup and restore requests.
As interest in eco-friendly architecture and Korean traditional culture is increasing, interest in contemporary han-ok is steadily increasing. Recently, many people experienced the han-ok directly and indirectly with the attention of a commercial contemporary han-ok such as restaurants, coffee shops, and lodging facilities, and as a result, the house has a preference for the residence of the contemporary han-ok. Compared to modern residential houses, however, han-ok is lack the convenience of heating and cooling, energy management, security, and maintenance. For this reason, the increased interest and preference for han-ok does not lead to living in contemporary han-ok. This study was conducted in the following ways to improve inconvenience by applying smart home services to contemporary han-ok. Recent technology trends in smart home services and technologies developed and marketed to date have been identified in previous research cases and literature studies. Based on this, a list of smart home services and their application methods were derived that would relieve the inconvenience of contemporary han-ok for smart home services. We hope that this research will serve as a reference for subsequent researchers studying contemporary han-ok.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.