• Title/Summary/Keyword: 기반암 깊이

Search Result 96, Processing Time 0.027 seconds

Electrical and Electromagnetic Surveys on the Nanji-do Landfill (난지도 매립장 전기.전자 탐사)

  • 이기화;권병두;정호준
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.2
    • /
    • pp.95-100
    • /
    • 1996
  • Schlumberger electrical soundings and Coincident loop time-domain electromagnetic soundings were made on the Nanji-do landfill to investigate the nature of fills and the subsurface structure. The measured data were transformed into apparent resistivity values and then inverted in terms of 1-D resistivity models. At 6 points, both measurements were carried out to check the validity of the interpreted subsurface electrical structures. Interpreted layered models from each method show a good agreement. Obtained models show that a conductive zone exist below the shallow resistive zone. Conductive zone, which is considered to be influenced by decomposition of organic waste materials and infiltration of precipitation, is terminated by resistive zone which is considered as basement. Considering the fact that conductive zone extends to the basement and there exist no barrier layers such as clay layers, contaminant plumes are likely to flow into the groundwater directly.

  • PDF

Shallow Eelectrical Resistivity and VLF Profiling at Sangchon-ri Area along the Southern Par of Yangsan Fault (양산단층 남부 상천리 일대의 천부 전기비저항 및 VLF 탐사)

  • 경재복;한수형;조현주;김지수
    • The Journal of Engineering Geology
    • /
    • v.9 no.1
    • /
    • pp.59-68
    • /
    • 1999
  • To clarify the geological structure of Yangsan fault around Sangchon-ri in the southern part of Kyungsang Basin the resistivity (dipole-dipole profiling) and VLF surveys carried out on the four profiles, crossing the inferred trace of the fault. The resistivity contrast across the fault is clearly shown on the profiles: higher resistivity and lower resistivity on the east and west, respectively. It is most likely from the uplift of the granitic bedrock on the east park due to the strike-fault raulting with vertical movement. The zero-crossing points of VLF anomalies, associated with near-surface fracture zone, are found to well correlate with the resistivity boundaries from the dipole-dipole profiling. Consequently, southern segment of Yangsan fault (at Sangchon-ri area) is interpreted to be vertically developed strike-slip fault with a difference more than 10m depth of basement rock at both sides.

  • PDF

Preliminary Study for Soil Moisture Measurement System in the Mountainous Hillslope (산림 사면에서의 토양 수분 측정 시스템구축을 위한 사전연구)

  • Jin, Sung-Won;Kim, Sang-Hyun;Kwon, Kyu-Sang;Lee, Yeon-Kil;Jung, Sung-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1142-1146
    • /
    • 2008
  • 토양수분은 지표수의 유출과정을 설명하는 과정에서 중요인자이며, 생태수문학의 핵심변수이자 기상모형의 결정적인 입력변수이다. 또한 토양수분의 공간적 시간적 특징들은 강우 및 지하수와 토양수분간의 순환 구조를 규명하는데 매우 중요하다. 본 연구에서는 산지사면의 토양수분을 체계적으로 측정하는데 필요한 시스템의 구축을 위한 기초조사 및 사전분석에 대한 연구를 수행하였다. 우수한 토양 수분 측정 장비인 TDR 장비 매설에 앞서 대상유역 선정에 대한 여러 가지 고려사항을 검토하고 수치지형 분석 등을 통한 사전분석을 실시하였다. 대상유역을 선정하기 위해서는 대상유역의 자료획득의 용이함, 지정학적, 시스템 운영적 측면에서의 가용성, 그리고 정밀측량 및 부수적요인 등 여러 요소의 고려가 요구된다. 본 연구에서는 경기도 파주시 적성면 설마리의 설마천 유역내 감악산 범륜사 우측 산지 사면을 측정대상 사면으로, 지정학적 위치, 식생분포, 지질구조 및 심도 등의 토양특성의 고려를 통해서 선정하였다. 또한 대상 사면에 흐름 발생 및 분포를 계산하기 위해서 대상사면의 지표 및 기반암 표고를 정밀 측량하였으며, 기반암 또는 풍화대까지의 깊이를 실측하여 지표면 및 지하면의 수치지형 모형을 구축하였다. 이를 대상사면 및 지하면에 대하여 표고수치지형모형(Digital Elevation Model:DEM)으로 도식한 후 흐름 발생 공간 분포를 계산하였다. 흐름발생공간분포예측은 단방향 알고리즘, 다방향 알고리즘, 흐름 분배 알고리즘 그리고 다중무한방향 알고리즘을 사용하여 지형인자인 기여사면적과 지형습윤지수를 계산하였다. 각 분배알고리즘의 의해 도출된 지형인자들로 인한 흐름발생 공간적 분포특성을 비교하였다. 이는 합리적인 토양수분 측정시스템을 구축하는데 중요한 의사결정 수단으로 판단된다.

  • PDF

Electrical Explorations in and around the Nanjido Waste Landfill (난지도 폐기물 매립장과 그 주변 지역에서의 전기탐사)

  • Lee, Kiehwa;Yoon, Jong-Ryeol
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.2
    • /
    • pp.64-71
    • /
    • 1995
  • Electrical soundings were conducted in and around the Nanjido waste landfill in August, 1994 and February, 1995. Schlumberger array was adopted and 37 and 22 soundings were performed around and in the Nanjido landfill, respectively. Besides, self potentials were measured at 50 points, in front of the right Nanjido landfill. Interpretations of the sounding data show low resistivity zones of about 10 Ω-m at depth ranging from 10 to 80 m from the surface in front of the landfill and of about 6 Ω-m at depth ranging from 37 m to 130 m in the landfill. It appears that these low resistivity zones are contaminated by or saturated with leachate, and their depths are deeper than those of boring data by 20∼30 m. These results indicate the possibility of contamination of weathered zone and the upper part of the bed rock in these areas. But sounding data obtained at the back of the landfill reveal more resistive and thinner low resistivity zones than those in and in front of the landfill. Thus it is concluded that the degree of contamination by leachate in and in front of the landfill is greater than that at the back of the landfill.

  • PDF

3-D Crustal Velocity Tomography in the Central Korean Peninsula (한반도 중부지역의 3차원 속도 모델 토모그래피 연구)

  • Kim, So Gu;Li, Qinghe
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.235-247
    • /
    • 1998
  • A new technique of simultaneons inversion for 3-D seismic velocity structure by using direct, reflected, and refracted waves is applied to the center of the Korean Peninsula including Pyongnam Basin, Kyonggi Massif, Okchon Fold Zone, Taebaeksan Fold Zone, Ryongnam Massif and Kyongsang Basin. Pg, Sg, PmP, SmS, Pn, and Sn arrival times of 32 events with 404 seismic rays are inverted for locations and crustal structure. 5 ($1^{\circ}$ along the latitude)${\times}6$ ($0.5^{\circ}$ along the longitude) ${\times}8$ block (4 km each layer) model was inverted. 3-D seismic crustal velocity tomography including eight sections from the surface to the Moho, eight profiles along latitude and longitude and the Moho depth distribution was determined. The results are as follows: (1) the average velocity and thickness of sediment are 5.15 km/sec and 3-4 km, and the velocity of basement is 6.12 km/sec. (2) the velocities fluctuate strongly in the upper crust, and the velocity distribution of the lower crust under Conrad appears basically horizontal. (3) the average depth of Moho is 29.8 km and velocity is 7.97 km/sec. (4) from the sedimentary depth and velocity, basement thickness and velocity, form of the upper crust, the Moho depth and form of the remarkable crustal velocity differences among Pyongnam Basin, Kyonggi Massif, Okchon Zone, Ryongnam Massif and Kyongsang Basin can be found. (5) The different crustal features of ocean and continent crust are obvious. (6) Some deep index of the Chugaryong Rift Zone can be located from the cross section profiles. (7) We note that there are big anisotropy bodies near north of Seoul and Hongsung in the upper crust, implying that they may be related to the Chugaryong Rift Zone and deep fault systems.

  • PDF

Near-surface P- and S-wave Velocity Structures in the Vicinity of the Cheongcheon Dam (청천댐 주변의 천부 P파 및 S파 속도구조)

  • Park, Yeong Hwan;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.109-118
    • /
    • 2013
  • On and near the 23-m high earthen Cheongcheon dam in Boryeong City, Korea, short seismic refraction and surface-wave profiles were conducted using a 5-kg sledgehammer. From vertical and horizontal components of the seismic waves, near-surface P-wave velocities (${\nu}_p$) and S-wave velocities (${\nu}_s$) were derived by inverting first-arrival refraction times and dispersion curves of Rayleigh waves. Average ${\nu}_p$ and ${\nu}_s$ for the Jurassic sedimentary basement were determined to be 1650 and 950 m/s at a depth of 30 m directly beneath the dam and 1650 m/s and 940 m/s at a depth of 10 m at the toe of the dam, respectively. The dynamic Poisson's ratio for these strata were therefore in the range of 0.24 to 0.25, which is consistent with ratios for consolidated sedimentary strata. Near a 45-m borehole 152 m downstream from the dam crest, an SH tomogram indicates a refraction boundary with an average ${\nu}_s$ of 870 m/s at depths of 10 ~ 12 m. At this site, the overburden comprises the upper layer with relatively constant ${\nu}_p$ and ${\nu}_s$ around 500 and 200 m/s, respectively, and the lower layer in which both ${\nu}_p$ and ${\nu}_s$ increase with depth almost linearly. The dynamic Poisson's ratios for the overburden were in the range of 0.30 to 0.43.

Seismic Refraction Survey for Installation of Water Pipe on a Side of the Seomjin River near Namwon (남원 섬진강변 관로 매설을 위한 굴절파 탐사)

  • Kim, Gi Yeong;U, Nam Cheol;Kim, Hyeong Su
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.209-216
    • /
    • 1999
  • In order to get geologic information necessary for underground installation of water pipe, seismic refraction profiling was applied to the southwest side of the Seomjin River which flows between Namwon-gun, Cholabuk-do and Gokseong-gun, Cholanam-do. Before obtaining the in-line refraction data, walkaway data were recorded with 1 m geophone interval and -36∼+36 m offset range. From the walkaway data, it is interpreted that a dry soil layer with the average velocity of 585 m/s covers wet sediments with the average velocity of 1,326 m/s. The second layer overlies basements nearly horizontally with the average velocity of 4,218 m/s. Refraction profiling of 220 m long with the geophone interval of 2 m is interpreted with the Generalized Reciprocal Method (GRM). Three layers are identified with average velocities of 688 m/s, 1,473 m/s, and 3,776 m/s, respectively. The depth to the bedrock impossible for ripping ranges between two extremes, 1.51∼2.43 m and 2.25∼3.54 m, depending upon thickness of the hidden layer. A typical shortcoming of refraction method, the hidden layer problem, prevents accurate estimation in depth of the second layer.

  • PDF

Spatio-temporal Regression Analysis between Soil Moisture Measurements and Terrain Attributes at Hillslope Scale (사면에서 지형분석을 통한 토양수분 시공간 회귀분석)

  • Song, Tae-Bok;Kim, Sang-Hyun;Lee, Yunghil;Jung, Sungwon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.161-170
    • /
    • 2013
  • Spatio-temporal distribution of soil moisture was studied to improve understanding of hydrological processes at hillslope scale. Using field measurements for three designated periods during the spring, summer and autumn seasons in 2010 obtained from Beomryunsa hillslope located at the Sulmachun watershed, correlation analysis was performed between soil moisture measurements and 18 different terrain attributes (e.g., curvatures and topographic index). The results of correlation analysis demonstrated distinct seasonal variation features of soil moisture in different depths with different terrain attributes and rainfall amount. The relationship between predicted flow lines and distribution of the soil moisture provided appropriate model structures and terrain indices.

Geophysical Study on the Geoelectrical Structure of the Hwasan Caldera in the Euisung Sub-basin Using Magnetotelluric Survey (자기지전류 탐사를 이용한 의성소분지 화산 칼데라의 지구물리학적 연구)

  • Yang, Jun-Mo;Kwon, Byung-Doo;Cho, In-Ky;Lee, Heui-Soon;Park, Gye-Soon;Um, Joo-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.99-108
    • /
    • 2008
  • To extend our detailed knowledge for the Hwasan caldera, we carried out magnetotelluric (MT) survey, which is pretty sensitive to electrical property variation in both horizontal and vertical direction of subsurface, across the Hwasan caldera with the direction of EW. The 2-D inversion results of observed MT data lead to following conclusions. Firstly, the depth of the basin basement inferred by the MT inversion results matches well with that suggested by previous potential studies, but the basement resistivity seems fairly low when compared to that of general case. This feature might be related with the large-scaled, highly conductive layer beneath the Euisung Sub-basin suggested by the previous MT study. Secondly, the high resistivity zones reaching to 4000 $\Omega{\cdot}m$ are imaged around two external ring fault boundaries. These zones are thought of as the response of the rhyolitic dykes intruding along the ring fault, and in the previous gravity data correspond to relatively high density anomalies. Thirdly, low resistivity zone reaching to 200 $\Omega{\cdot}m$ is detected around a depth of 1km beneath the central part of the caldera, which has not been yet reported in korean geophysical literatures. If we take account of the evolution model of the Hwasan caldera, this zone is regarded as the past sedimentary layer that subsided during the period of forming external ring fault system. In addition, the relatively low density anomaly observed in the central part of the caldera may be attributed to this sedimentary layer.

Representative Shear Wave Velocity of Geotechnical Layers by Synthesizing In-situ Seismic Test Data in Korea (현장 탄성파시험 자료 종합을 통한 국내 지반지층의 대표 전단파속도 제안)

  • Sun, Chang-Guk;Han, Jin-Tae;Cho, Wanjei
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.293-307
    • /
    • 2012
  • Shear wave velocity is commonly invoked in explaining geophysical phenomena and in solving geotechnical engineering problems. In particular, the importance of shear wave velocity in geotechnical earthquake engineering has been widely recognized for seismic design and seismic performance evaluation. In the present study, various insitu seismic tests were performed to evaluate geotechnical dynamic characteristics at 183 sites in Korea, and shear wave velocity profiles with depth were determined to be representative of the dynamic properties at the investigated sites. Subsurface soil and rock layers at the target sites were reclassified into five geotechnical layers: fill, alluvial soil, weathered soil, weathered rock, and bedrock, taking into account their general uses in geotechnical earthquake engineering practice. Average shear wave velocity profiles for the five geotechnical layers were obtained by synthesizing the shear wave velocity profiles from seismic tests in the field. Based on the profiles, a representative shear wave velocity value was determined for each layer, for use in engineering seismology and geotechnical earthquake engineering.