• Title/Summary/Keyword: 기류해석

Search Result 121, Processing Time 0.034 seconds

A Numerical Study on Flow Field near the Roller Conveyor for Flat Panel Display (평면 디스플레이 기판 운송용 롤러 컨베이어 주위의 유동장에 관한 수치해석 연구)

  • Jeon, Hyun-Joo;Kim, Hyoung-Jin;Im, Ik-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.6-11
    • /
    • 2009
  • Flow field in a roller conveyor system, induced from the movement of a cassette in which glasses for flat panel display are loaded, is numerically studied in this paper. Contamination on the glass surface by dust particles produced from mechanical friction between roller and cassette is predicted from the analysis results of flow fields. Results show that a large swirl flow is formed under the moving cassette with constant speed. This swirl flow is confined only under the cassette because two main streams from the backward and the fan filter unit on the top ceiling are sufficiently strong. Therefore, it can be said that possibility of the contamination by the particles originated from the friction is relatively low. It is also revealed that flow direction between glass plates is changed according to the speed of the cassette movement due to the shear force of glass plates.

Numerical Calculations for the Optimal Performance of Regenerative Catalytic Oxidation(RCO) (축열식 촉매 산화(RCO) 반응의 성능 최적화를 위한 전산 해석)

  • Jung, Yu-Jin;Lee, Jae-Jeong;Jung, Jong-Hyeon;Kim, Jin-Uk;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5384-5391
    • /
    • 2011
  • The computational fluid dynamics was analyzed for the pressure distribution, stream velocity distribution, stream line field, retention time and temperature distribution which are applied to the catalyst layer in the RCO reactor to derive the optimum operating condition of the heat condensing type catalytic oxidation (RCO) reactor. The results from the computational analysis revealed that the pressure loss due to the ceramic honeycomb in the catalytic bed of the reactor which is operating currently is not significant and the stream velocity (1.8~2.7 m/s) after the ceramic filter is working in stability without big channeling. To improve the stream velocity distribution of the air stream, it is necessary to extension of the connecting range between the plenum and catalytic bed inside the facility. However, the method of attaching the air stream guide vane or the perforated plate inside the reactor was not so effective.

Numerical Study on Indoor Dispersion of Radon Emitted from Building Materials (건축자재로부터 방출되는 라돈의 실내 확산에 대한 수치해석적 연구)

  • Park, Hoon Chae;Choi, Hang Seok;Cho, Seung Yeon;Kim, Seon Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.325-332
    • /
    • 2014
  • Growing concerns about harmful influence of radon on human body, many efforts are being made to decrease indoor radon concentration in advanced countries. To develop an indoor radon reduction technology, it is necessary to develop a technology to predict and evaluate indoor inflow and emission of radon. In line with that, the present study performed computational modelling of indoor dispersion of radon emitted from building materials. The computational model was validated by comparing computational results with analytical results. This study employed CFD (Computational Fluid Dynamics) analysis to evaluate the radon concentration and the airflow characteristics. Air change rate and ventilation condition were changed and several building materials having different radon emission characteristics were considered. From the results, the indoor radon concentration was high at flow recirculation zones and inversely proportional to the air change rate. For the different building materials, the indoor radon concentration was found to be highest in cement bricks, followed by eco-carats and plaster boards in the order. The findings from this study will be used as a method for selecting building materials and predicting and evaluating the amount of indoor radon in order to reduce indoor radon.

Importance of Carbon Monoxide Transfer Coefficient (KCO) Interpretation in Patients with Airflow Limitation (기류제한 환자의 일산화탄소확산능 해석에서 폐용적 보정의 의의)

  • Seo, Yong Woo;Choi, Won-Il;Lee, Jeong Eun;Park, Hun Pyo;Ko, Sung Min;Won, Kyoung Sook;Keum, Dong Yoon;Lee, Mi-Young;Jeon, Young June
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.4
    • /
    • pp.374-379
    • /
    • 2005
  • Background : The single-breath carbon monoxide diffusion capacity (DLCO) and the per unit alveolar volume (KCO; $D_LCO/VA$) gave discordant values when there was an abnormal alveolar volume (VA). However, the clinical significance of the discordant values in patients with airflow limitation has not been examined. This study investigated the $D_LCO$ and KCO changes after improving the airflow limitation. Methods : The baseline $D_LCO$ and KCO with lung volume were measured in patients with an airflow obstruction. The effective alveolar volume was measured using the single-breath $CH_4$ dilution method. The patients divided into two groups according to the baseline values: (1) increased KCO in comparison with the $D_LCO$ (high discordance) (2) decreased or not increased KCO in comparison with the $D_LCO$ (low discordance). The diffusion capacity and lung volume were measured after treatment. Results : There was no significant difference in the baseline lung volumes including the $FEV_1$ and FVC between the two groups. The $FEV_1$ and FVC were significantly increased in the high discordance group compared with the low discordance group after treating the airflow limitation. The $D_LCO$ and alveolar volume were significant higher in the high discordance group compared with the low discordance group while the TLC was not. Conclusion : The discordance between the $D_LCO$ and KCO could be translated into an airflow reversibility in patients with an airflow limitation.

Numerical Study for Flow Uniformity in Selective Catalytic Reduction (SCR) (SCR 반응기 유동 균일화를 위한 수치적 연구)

  • Jung, Yu-Jin;Hong, Sung-Gil;Lee, Gang-Woo;Shon, Byung-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.151-154
    • /
    • 2011
  • $NO_x$ 제어 기술로는 크게 연소 전 탈질, 연소 개선 및 연소 후 탈질 기술로 구분할 수 있으며, 연소 후 탈질 기술에 속하는 SCR은 촉매를 사용하여 $NO_x$를 환원하는 대표적인 배연탈질기술이다. SCR의 $NO_x$ 저감 성능은 촉매 요인(촉매 구성물질, 형태, 공간속도 등)과 배가스의 온도, 유속 분포, 공정 운전 조건 등의 다양한 인자에 의해 좌우되는데 특히, 촉매층으로 유입되는 유동의 균일도는 가장 중요한 요소가 된다. 유동이 균일하지 않을 경우 촉매 전단에 편류가 발생하게 될 것이며 일정 촉매만 사용하게 되어 촉매 사용주기 감소 및 SCR 성능 저하를 초래할 수 있기 때문이다. 본 연구에서는 3차원 수치 해석 기법을 이용하여 설계 초기의 SCR 반응기 내 유동 특성을 모사하여 기류 균일도 여부를 확인하고, SCR 내 유동 균일도를 최적화시키기 위한 설계를 목적으로 설치하는 가이드 베인과 배플, 다공판이 반응기 내부 유동 및 촉매층의 기류 균일도에 미치는 영향에 대하여 연구를 수행하였다. 그 결과, 유동 개선을 위해 인입 덕트 곡관부에 가이드 베인을 설치하여 처리가스를 적절하게 배분시키고, 반응기 상단에 3단 배플을 설치한 결과 반응기 내부 유동의 편류 개선에 매우 효과적임을 알 수 있었다. 또한 다공판을 예비 촉매층 하단부 위치에 추가로 설치함에 따라 유동을 한번 더 완충시킬 수 있어 기류 균일도가 매우 양호해짐을 알 수 있었다.

  • PDF

Activation Conditions of Sprinkler Head Considering Fire Growth Scenario (화재성장시나리오에 따른 스프링클러 헤드의 작동조건)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.45-51
    • /
    • 2020
  • The aim of this study is to investigate the gas temperature and velocity during sprinkler activation considering the fire growth scenario based on the thermal response model of the sprinkler. The fire source is assumed to have time square fire growth scenarios with a maximum heat release rate of 3 MW. Eight types of standard and fast-response sprinkler heads with an operating temperature range of 65-105 ℃ and a response time index range of 25-171 m1/2s1/2 were adopted. The temperature difference between the gas stream and the sensing element of the sprinkler head decreased as the fire growth slowed down, and the RTI value decreased. The overall gas temperature and velocity conditions predicted using the FDS model at sprinkler activation were in reasonable agreement with those of standard test conditions of the sprinkler head response. However, the sprinkler head could be activated at lower limits of gas temperature and velocity under the current test conditions for a slowly growing fire scenario.

유도형초음파를 이용한 열교환기류의 건전성평가기술 개발

  • 조윤호;진태은
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.170-175
    • /
    • 1996
  • 대형 튜브구조물의 길이방향으로 전파되는 유도형초음파(Ultrasonic Guided Wave)를 이용한 원자력발존소내의 열교환기류에 대한 새로운 건전성 평가법을 제시한다. 이를 위해, 유도형초음파의 물리적 특성을 이론적으로 해석하였고 실험을 통해 열고환기류에 대한 유도형초음파법의 타당성 여부를 검토하였다. 국부적인 평가(Local Inspection)에 근거한 기존의 평가법에 비해 유도형초음파법은 단시간 내에 보다 효율적으로 전체 열교환기에 대한 신뢰성 검사(Global Inspection)가 가능하며 만족할 만한 민감도(Sensitivity)를 갖고 있음을 보였다.

  • PDF