• Title/Summary/Keyword: 기둥길이

Search Result 182, Processing Time 0.03 seconds

Post-buckling of Non-uniform Cantilever Column Subjected to a Combined Load (결합하중을 받는 임의단면 기둥의 좌굴후 해석)

  • Shin, Young-Jae;Chiba, Masakatsu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.323-329
    • /
    • 2002
  • This paper presents the application of the technique of differential transformation to the post-buckling problem of non-uniform cantilever column subjected to a combined load. Numerical calculations are carried out and compared with previously published results to validate the results of the present method. The results obtained by this method agree very well with those reported in the previous works. The results obtained by the present method are presented for both various non-uniform columns and loads.

An Improved Stability Design of Plane Frames using System Buckling and Second-order Elastic Analysis (탄성좌굴 고유치 및 2차 탄성해석법을 이용한 평면강절프레임의 개선된 좌굴설계법)

  • Song, Ju-Young;Kyung, Yong-Soo;Kim, Nam-Il;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.159-168
    • /
    • 2005
  • An improved stability design method for beam-columns of plane frames is proposed based on system buckling analysis and second-order elastic analysis. For this, the tangent stiffness matrix of beam-column elements is first derived using stability functions and a procedure for evaluating effective buckling lengths is reviewed using elastic system buckling analysis. And then the second-order analysis procedure is presented considering $P-\Delta$ effects and is compared with the closed-form solution through numerical examples. Design examples showing the validity of the proposed method we presented and their numerical results are compared with those obtained from the conventional stability design methods. Finally some useful conclusions are drawn.

Numerical Approach for a Partial CFST Column using an Improved Bond-Slip Model (개선된 부착슬립 모델을 적용한 부분 CFST 기둥의 수치해석)

  • Hwang, Ju-young;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.153-158
    • /
    • 2020
  • In this study, a numerical approach for evaluating the resisting capacity of a partial concrete-filled steel tube (CFST) column is introduced. By strengthening the plastic hinge part of a traditional reinforced concrete column with a steel tube, a partial CFST shows a similar bending moment capacity as that of a full CFST column but with reduced material cost. To conduct an elaborate numerical analysis of a partial CFST column, an improved bond-slip model is applied to a finite element (FE) model at the interface between the steel tube and in-filled concrete. This numerical model is verified through the results of a double curvature bending-compression test. A parametric study with the proposed numerical model is used to obtain the load moment interaction diagrams for evaluating the resisting capacity based on various dimensions. Finally, the required strengthening length is estimated for each degree of thickness of the steel tube, and the failure mechanism of the partial CFST column based on the dimensions of the steel tube are identified.

Buckling Loads and Post-Buckling Behaviors of Shear Deformable Columns with Regular Cross-Section (전단변형을 고려한 정다각형 단면 기둥의 좌굴하중 및 후좌굴 거동)

  • Lee, Byeoung Koo;Lee, Tae Eun;Kwon, Yun Sil;Kim, Sun Gi
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.683-691
    • /
    • 2001
  • Numerical methods are developed for solving the elastica and buckling load of tapered columns with shear deformation, subjected to a compressive end load. The linear, parabolic and sinusoidal tapers with the regular polygon cross-sections are considered, whose material volume and span length are always held constant. The differential equations governing the elastica of buckled column are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine the rotation at left end and the buckling load, respectively. The numerical methods developed herein for computing the elastica and the buckling loads of the columns are found to be efficient and reliable.

  • PDF

Shear Strength of Retrofitted RC Squat Wall by Additional Boundary Element (단부 증타 보강된 RC 전단벽체의 전단강도)

  • Yi, You-Sun;Hong, Sung-Gul;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.489-499
    • /
    • 2015
  • This study suggested shear strength prediction model for retrofitted single-layered RC squat wall by providing column element as additional boundary element. This model revised existing shear strength prediction model of shear wall to consider detail and shear deformation capacity of column by assuming the length that concentrated shear deformation of the column is occurred. It was able to suggest additional compatibility condition related to shear strain of retrofitted of retrofitted shear wall at the ultimate state by using this length. Therefore, this study proposed a flow chart for predicting shear strength of the retrofitted shear wall considering this additional condition. Moreover, this study also proposed a method for predicting initial stiffness of the retrofitted shear wall by transforming the wall's resisting mechanism against to lateral load to a single diagonal strut mechanism. The proposed methods can predict shear strength and initial stiffness of not only the retrofitted shear wall of this study, also infilled RC shear wall in RC frame.

Behavior of Concrete-Filled Tube Column to H-Beam Connections with External Stiffeners and Reinforcing Bar (외부스티프너와 철근으로 보강한 CFT 기둥-H형강 보 접합부의 거동)

  • Kang, Chang-Hoon;Shin, Kyung-Jae;Oh, Young-Suk;Moon, Tae-Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.55-63
    • /
    • 2000
  • This paper is a study on the behavior of Concrete-Filled Square Tubular(CFST) column to H-beam connections reinforced with external stiffeners and reinforcing bar. The cyclic loading tests of 5 test specimens were carried out. The main Parameters are as follows; 1)the length of the stiffener: 200mm, 250mm, 2)the diameter of reinforcing bar: HD16, 19. The results of the researches demonstrate that the increase of the stiffener length was more effective than the increase of the area of reinforcing bar in the point of both strength and stiffness. By reinforcing external stiffeners, stable hysteretic behavior was shown and plastic hinge was formed on the beam flange. Cold-formed tube sections should be used carefully to avoid the welding fracture at the round corners of section, and the proposed welding methods are suitable for this connections.

  • PDF

An Experimental Study on the Bond Strengths for Concrete Filled Steel Tube Columns using a Push-Out Test (단순가력실험을 통한 콘크리트충전 강관기둥의 부착응력에 관한 연구)

  • Woo, Hae Sung;Kim, Jin Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.481-487
    • /
    • 2002
  • Currently, the load transfer's mechanism from a beam to a column has yet to ve clarified in a concrete filled steel tubular (CFT) structure with a connection type of an exterior diaphragm. The loads for each floor are transferred to the concrete core from a steel beam through ha contacted face between an in-filled concrete and the interior surface of a steel tube. Thus, a Push-Out test was performed to investigate the load transfer mechanism. A total of 30 samples were tested to confirm the bond stress and/or axial load distribution between a steel tube and in-filled concrete for CFT column. The main parameters considered for this study included concrete type, steel tube-shape/length, and the effect of a weld joint wit ha backing strip for a column splice. Test results were summarized to confirm load transfer behavior between a concrete and steel tube for each experimental parameter, using the analytical approach to verify experimental results.

An Evaluation on Punching Shear Capacity of R/C Flat Plate Slab (RC 플랫 플레이트 슬래브의 뚫림전단성능평가)

  • Kim, Jong-Keun;Shin, Sung-Woo;Yang, Ji-Soo;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.205-213
    • /
    • 2003
  • The primary purpose of this study is to investigate punching shear capacity of flat plate slab using high strength concrete in column. It may be much contributed to economy efficiency and structural advantages that High Strength Concrete(HSC) used for vertical member and Normal Strength Concrete(NSC) for horizontal member. Therefore, six plate flat slab specimens with HSC column and NSC slab had been made and tested with real scale. The major variables were compressive strength of concrete(fck=285, $460kgf/cm^2$), extended length of HSC from column face and amount of shear reinforcements. As the result of this test, the maximum load and punching shear capacity of specimens is affected by extended length and shear reinforcements.

Numerical Study on Draining from Cylindrical Tank Using Stepped Drain Port (계단형 배수구를 가진 원통 용기에서의 배수 과정에 관한 수치해석 연구)

  • Son, Jong Hyeon;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1043-1050
    • /
    • 2014
  • An air-core vortex is generated during draining after stirring a rotating cylindrical tank or after filling it with water. The formation of the air-core vortex and the time of its formation are dependent on drain conditions such as the dimensions of the tank, the initial rotation or stirring speed, and the shape of the drain port. In this study, a draining process using a two-stage drain port was numerically investigated. The length and radius of the first drain stage located in the lower part of the drain port were kept constant, whereas the radius of the second drain stage was varied for simulating the draining process. The simulation was conducted by considering an axisymmetric swirling flow for all cases. The declining water level was monitored by an interface capturing method. Further, the effects of the radius of the second drain stage on the time of formation of the air-core vortex and the internal flow structure were investigated.