• Title/Summary/Keyword: 기대 이미지

Search Result 931, Processing Time 0.026 seconds

Identification of Multiple Cancer Cell Lines from Microscopic Images via Deep Learning (심층 학습을 통한 암세포 광학영상 식별기법)

  • Park, Jinhyung;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.374-376
    • /
    • 2021
  • For the diagnosis of cancer-related diseases in clinical practice, pathological examination using biopsy is essential after basic diagnosis using imaging equipment. In order to proceed with such a biopsy, the assistance of an oncologist, clinical pathologist, etc. with specialized knowledge and the minimum required time are essential for confirmation. In recent years, research related to the establishment of a system capable of automatic classification of cancer cells using artificial intelligence is being actively conducted. However, previous studies show limitations in the type and accuracy of cells based on a limited algorithm. In this study, we propose a method to identify a total of 4 cancer cells through a convolutional neural network, a kind of deep learning. The optical images obtained through cell culture were learned through EfficientNet after performing pre-processing such as identification of the location of cells and image segmentation using OpenCV. The model used various hyper parameters based on EfficientNet, and trained InceptionV3 to compare and analyze the performance. As a result, cells were classified with a high accuracy of 96.8%, and this analysis method is expected to be helpful in confirming cancer.

  • PDF

Design of Artificial Intelligence Course for Humanities and Social Sciences Majors

  • KyungHee Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.187-195
    • /
    • 2023
  • This study propose to develop artificial intelligence liberal arts courses for college students in the humanities and social sciences majors using the entry artificial intelligence model. A group of experts in computer, artificial intelligence, and pedagogy was formed, and the final artificial intelligence liberal arts course was developed using previous research analysis and Delphi techniques. As a result of the study, the educational topics were largely composed of four categories: image classification, image recognition, text classification, and sound classification. The training consisted of 1) Understanding the principles of artificial intelligence, 2) Practice using the entry artificial intelligence model, 3) Identifying the Ethical Impact, and 4) Based on learned, team idea meeting to solve real-life problems. Through this course, understanding the principles of the core technology of artificial intelligence can be directly implemented through the entry artificial intelligence model, and furthermore, based on the experience of solving various real-life problems with artificial intelligence, and it can be expected to contribute positively to understanding technology, exploring the ethics needed in the artificial intelligence era.

A Study on Shortform Content Storytelling in YouTube Channel Entertainment Program : Focusing on the Comparative Analysis of Storytelling with TV Entertainment Programs (유튜브 채널 예능 프로그램에 나타난 숏폼 콘텐츠 스토리텔링 연구: TV 예능프로그램과의 스토리텔링 비교 분석을 중심으로)

  • Jiran Zhou
    • Journal of Industrial Convergence
    • /
    • v.21 no.8
    • /
    • pp.13-21
    • /
    • 2023
  • The purpose of this study was to compare storytelling with TV entertainment programs to find out which elements of web entertainment affected the shift of viewers' interest, and to identify the characteristics of web entertainment storytelling. To this end, each of the web and TV entertainment programs were selected for storytelling analysis, and storytelling analyzed the contents of each item by dividing them into images, backgrounds, stories, and characters. As a result of the analysis, unlike TV programs, web entertainment storytelling allows viewers to immerse themselves in content through a composition that runs directly from the beginning to the crisis, and is characterized by a clear formation in a short video through a clear ending narrative. These research results hope that short-form web entertainment programs produced in the future will be able to identify strategies for viewers' immersion and storytelling strategies.

Dr. Vegetable: an AI-based Mobile Application for Diagnosis of Plant Diseases and Insect Pests (농작물 병해충 진단을 위한 인공지능 앱, Dr. Vegetable)

  • Soohwan Kim;DaeKy Jeong;SeungJun Lee;SungYeob Jung;DongJae Yang;GeunyEong Jeong;Suk-Hyung Hwang;Sewoong Hwang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.457-460
    • /
    • 2023
  • 본 연구는 시설작물의 병충해 진단을 위해 딥러닝 모델을 응용한 인공지능 서비스 앱, Dr. Vegetable을 제안하고자 한다. 농업 현장에서 숙련된 농부는 한눈에 농작물의 병충해를 판단할 수 있지만 미숙련된 농부는 병충해 피해를 발견하더라도 그 종류와 해결 방법을 찾아내기가 매우 어렵다. 또한 아무리 숙련된 농부라고 할지라도 육안검사만으로 병충해를 조기에 발견하는 것은 쉽지 않다. 한편 시설작물의 경우 병충해에 의한 연쇄피해가 발생할 우려가 있으므로 병충해의 조기 발견 및 방제가 매우 중요하다. 즉, 농부의 경험에 따른 농작물 병해충 진단은 정확성을 장담할 수 없으며 비용과 시간적인 측면에서 위험성이 높다고 할 수 있다. 본 논문에서는 YOLOv5를 활용하여 상추, 고추, 토마토 등 농작물의 병충해를 진단하는 인공지능 서비스를 제안한다. 특히 한국지능정보사회진흥원이 운영하고 있는 AI 통합 플랫폼인 AI 허브에서 제공하는 노지 작물 질병 및 해충 진단 이미지를 사용하여 딥러닝 모델을 학습하였다. 본 연구를 통해 개발된 모바일 어플리케이션을 이용하여 실제 시설농장에서 병충해 진단 서비스를 적용한 결과 약 86%의 정확도, F1 Score 0.84, 그리고 0.98의 mAP 값을 얻을 수 있었다. 본 연구에서 개발한 병충해 진단 딥러닝 모델을 다양한 조도에서 강인하게 동작하도록 개선한다면 농업 현장에서 널리 활용될 수 있을 것으로 기대한다.

  • PDF

Research on APC Verification for Disaster Victims and Vulnerable Facilities (재난약자 및 취약시설에 대한 APC실증에 관한 연구)

  • Kim, Seung-Yong;Hwang, In-Cheol ;Kim, Dong-Sik
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.278-281
    • /
    • 2023
  • 연구목적: 본 연구는 요양병원 등 재난취약시설에 재난이 발생할 경우 잔류한 요구조자를 정확하게 파악하여 소방 등 대응기관에 제공하는 APC(Auto People Counting)의 인식률 개선에 목적이 있다. 현재 재난 발생 시 건물 내 요구조자의 현황 파악을 위해 대응기관이 재난 현장에 도착하여 건물관계자에게 직접 물어보고 있다. 이는 요구조자에 대한 부정확한 정보일 가능성이 있어 대응기관의 업무범위가 확대되고 이로인해 구조자의 안전에도 위험이 될 수 있다. APC는 건물내 출입하는 인원을 자동으로 집계하여 실시간 잔류인원 정보를 제공함으로써 재난 시 요구조자 현황을 정확히 파악할 수 있다. 본 연구에서는 APC가 보다 정확하게 출입 인원을 집계할 수 있도록 최적의 인공지능 알고리즘을 선정하는데 목적이 있다. 연구방법: 본 연구에서는 실제 재난취약시설에 설치되어 운영 중인 APC를 대상으로 카메라를 통해 출입 인원의 이미지를 인식하는 알고리즘을 개선하기 위해 CNN모델을 활용하여 베이스라인 모델링을 하였다. 다양한 알고리즘의 성능을 분석하여 상위 7개의 후보군을 선정하고 전이학습 모델을 활용하여 성능이 가장 우수한 최적의 알고리즘을 선정하는 방법으로 연구를 수행하였다. 연구결과: 실험결과 시간과 성능이 가장 좋은 Densenet201, Resnet152v2 모델의 정밀도와 재현율을 확인한 결과 모든 라벨에 대해서 정확도 100%를 나타내는 것을 확인할 수 있었다. 이 중 Densenet201 모델이 더 높은 성능을 보여주었다. 결론: 다양한 인공지능 알고리즘 중 APC에 적용할 수 있는 최적의 알고리즘을 선정하였고 이는 APC의 인식률을 개선하여 재난시 요구조자의 정보를 정확하게 파악하여 신속하고 안전한 구조작업이 가능할 것이다. 이는 요구조자의 안전한 구조뿐만 아니라 구조작업을 수행하는 구조자의 안전을 확보하는 데 기여할 것으로 기대된다. 향후 연무 등 다양한 재난상황에서 재난취약시설 내 출입인원을 정확하게 파악할 수 있도록 알고리즘 분석 및 학습에 대한 추가 연구가 요구된다.

  • PDF

An Efficiency Analysis of an Artificial Intelligence Medical Image Analysis Software System : Focusing on the Time Behavior of ISO/IEC 25023 Software Quality Requirements (인공지능 기술 기반의 의료영상 판독 보조 시스템의 효율성 분석 : ISO/IEC 25023 소프트웨어 품질 요구사항의 Time Behavior를 중심으로)

  • Chang-Hwa Han;Young-Hwang Jeon;Jae-Bok Han;Jong-Nam Song
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.939-945
    • /
    • 2023
  • This study analyzes the 'performance efficiency' of AI-based reading assistance systems in the field of radiology by measuring their 'time behavior' properties. Due to the increase in medical images and the limited number of radiologists, the adoption of AI-based solutions is escalating, stimulating a multitude of studies in this area. Contrary to the majority of past research which centered on AI's diagnostic precision, this study underlines the significance of time behavior. Using 50 chest X-ray PA images, the system processed images in an average of 15.24 seconds, demonstrating high consistency and reliability, which is on par with leading global AI platforms, suggesting the potential for significant improvements in radiology workflow efficiency. We expect AI technology to play a large role in the field of radiology and help improve overall healthcare quality and efficiency.

A Study on the Jewelry decorative pattern based on Wa-Dang in Unified Silla period (통일신라시대 와당을 모티브로 한 주얼리장식용 문양 연구)

  • kyeng-Tae Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.113-122
    • /
    • 2023
  • This study was conducted on the premise of the development of cultural products using relic assets of traditional culture in a knowledge and information society led by culture and soft power. It was conducted in the context of exploring the possibility of cultural content products of Wa-Dang relics excavated from traditional architecture in the Unified Silla Period and expanding the scalability of commercialization motifs that are highly useful in jewelry design. First, the original form, material, use, size, meaning, and formative aesthetics of Wa-Dang were identified through literature and media research. Among the considered Wa-Dang, 10 types of Wa-Dang which represent the category and have values in modules and patterns were selected, and, then, circular images were extracted and modularized with a "formal simplification technique." Based on the "mathematical symmetry analysis technique," which is a method of systematizing pattern composition arrangement format. we derived a planar formative element that can be used in the development of the cultural content industry and jewelry design. In order to expand its usability in the jewelry industry in the future, it was presented as a 2D digital image. In the future, we hope more studies on the various cultural content industry utilizing the traditional culture will be carried out.

Development of Gas Type Identification Deep-learning Model through Multimodal Method (멀티모달 방식을 통한 가스 종류 인식 딥러닝 모델 개발)

  • Seo Hee Ahn;Gyeong Yeong Kim;Dong Ju Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.525-534
    • /
    • 2023
  • Gas leak detection system is a key to minimize the loss of life due to the explosiveness and toxicity of gas. Most of the leak detection systems detect by gas sensors or thermal imaging cameras. To improve the performance of gas leak detection system using single-modal methods, the paper propose multimodal approach to gas sensor data and thermal camera data in developing a gas type identification model. MultimodalGasData, a multimodal open-dataset, is used to compare the performance of the four models developed through multimodal approach to gas sensors and thermal cameras with existing models. As a result, 1D CNN and GasNet models show the highest performance of 96.3% and 96.4%. The performance of the combined early fusion model of 1D CNN and GasNet reached 99.3%, 3.3% higher than the existing model. We hoped that further damage caused by gas leaks can be minimized through the gas leak detection system proposed in the study.

Study on the Application of RT-DETR to Monitoring of Coastal Debris on Unmanaged Coasts (비관리 해변의 해안 쓰레기 모니터링을 위한 RT-DETR 적용 방안 연구)

  • Ye-Been Do;Hong-Joo Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.453-466
    • /
    • 2024
  • To improve the monitoring of Coastal Debris in the South Korea, which is difficult to estimate due to limited resources and vertex-based surveys, an approach based on UAV(Unmanned Aerial Vehicle) images and the RT-DETR(Realtime DEtection TRansformer) model was proposed for detecting Coastal Debris. By comparing to field investigation, the study suggested the possibility of quantitatively detecting coastal garbage and estimating the total capacity of garbage deposited on the natural coastline of the South Korea. The RT-DETR model achieved an accuracy of 0.894 for mAP@0.5 and 0.693 for mAP@0.5:0.95 in training. When applied to unmanaged coasts, the accuracy for the total number of coastal debris items was 72.9%. It is anticipated that if guidelines for defining monitoring of unmanaged coasts are established alongside this research, it should be possible to estimate the total capacity of the deposited coastal debris in the South Korea.

Effects of Programming Education using Visual Literacy: Focus on Arts Major (시각적 문해력을 활용한 프로그래밍 교육의 효과 : 예술계열 중심으로)

  • Su-Young Pi;Hyun-Sook Son
    • Journal of Practical Engineering Education
    • /
    • v.16 no.2
    • /
    • pp.105-114
    • /
    • 2024
  • Recently, with an emphasis on software proficiency, universities are providing software education to all students regardless of their majors. However, non-majors often lack motivation for software education and perceive the unfamiliar learning content as more challenging. To address this issue, tailored software education according to the learners' characteristics is essential. Art students, for instance, with their strong visual comprehension and expressive abilities, can benefit from utilizing visual literacy to enhance the effectiveness of programming education. In this study, we propose decomposing everyday problems into flowcharts and pseudocode to construct procedural and visual images. Using the educational programming language PlayBot, we aim to analyze the effectiveness of teaching by coding to solve problems. Through this approach, students are expected to grasp programming concepts, understand problem-solving processes through computational thinking, and acquire skills to apply programming in their respective fields.