• Title/Summary/Keyword: 기능 모델링

Search Result 1,156, Processing Time 0.025 seconds

Pipeline Positioning Method in Augmented Reality using Wall Plane Detection (증강현실에서 벽면 검출을 이용한 파이프라인 배치 방법)

  • Sang-Hyun Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.1041-1050
    • /
    • 2024
  • BIM technology, which was introduced to systematically manage buildings, is also being combined with augmented reality technology to provide users with realistic services. In order for the BIM model to be accurately positioned in the real space, it is necessary to align the BIM modeling space with the augmented reality space. In this paper, we propose a method to accurately position a BIM model at the designed location when augmenting it into real space. In the proposed method, an augmented reality application is implemented by applying the Unity 3D game engine and the ARCore platform, which uses the plane recognition function of ARCore. We generate a marker on the detected plane to set the location of a BIM model, and correct the direction of the model using the normal vectors from the wall and floor. Implementation results show that the proposed method utilizes ARCore's plane recognition library to effectively compensate for spatial differences and accurately place the model in real-world space.

Implementation and Evaluation of the Electron Arc Plan on a Commercial Treatment Planning System with a Pencil Beam Algorithm (Pencil Beam 알고리즘 기반의 상용 치료계획 시스템을 이용한 전자선 회전 치료 계획의 구현 및 정확도 평가)

  • Kang, Sei-Kwon;Park, So-Ah;Hwang, Tae-Jin;Cheong, Kwang-Ho;Lee, Me-Yeon;Kim, Kyoung-Ju;Oh, Do-Hoon;Bae, Hoon-Sik
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.304-310
    • /
    • 2010
  • Less execution of the electron arc treatment could in large part be attributed to the lack of an adequate planning system. Unlike most linear accelerators providing the electron arc mode, no commercial planning systems for the electron arc plan are available at this time. In this work, with the expectation that an easily accessible planning system could promote electron arc therapy, a commercial planning system was commissioned and evaluated for the electron arc plan. For the electron arc plan with use of a Varian 21-EX, Pinnacle3 (ver. 7.4f), with an electron pencil beam algorithm, was commissioned in which the arc consisted of multiple static fields with a fixed beam opening. Film dosimetry and point measurements were executed for the evaluation of the computation. Beam modeling was not satisfactory with the calculation of lateral profiles. Contrary to good agreement within 1% of the calculated and measured depth profiles, the calculated lateral profiles showed underestimation compared with measurements, such that the distance-to-agreement (DTA) was 5.1 mm at a 50% dose level for 6 MeV and 6.7 mm for 12 MeV with similar results for the measured depths. Point and film measurements for the humanoid phantom revealed that the delivered dose was more than the calculation by approximately 10%. The electron arc plan, based on the pencil beam algorithm, provides qualitative information for the dose distribution. Dose verification before the treatment should be mandatory.

Performance Optimization of Numerical Ocean Modeling on Cloud Systems (클라우드 시스템에서 해양수치모델 성능 최적화)

  • JUNG, KWANGWOOG;CHO, YANG-KI;TAK, YONG-JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.3
    • /
    • pp.127-143
    • /
    • 2022
  • Recently, many attempts to run numerical ocean models in cloud computing environments have been tried actively. A cloud computing environment can be an effective means to implement numerical ocean models requiring a large-scale resource or quickly preparing modeling environment for global or large-scale grids. Many commercial and private cloud computing systems provide technologies such as virtualization, high-performance CPUs and instances, ether-net based high-performance-networking, and remote direct memory access for High Performance Computing (HPC). These new features facilitate ocean modeling experimentation on commercial cloud computing systems. Many scientists and engineers expect cloud computing to become mainstream in the near future. Analysis of the performance and features of commercial cloud services for numerical modeling is essential in order to select appropriate systems as this can help to minimize execution time and the amount of resources utilized. The effect of cache memory is large in the processing structure of the ocean numerical model, which processes input/output of data in a multidimensional array structure, and the speed of the network is important due to the communication characteristics through which a large amount of data moves. In this study, the performance of the Regional Ocean Modeling System (ROMS), the High Performance Linpack (HPL) benchmarking software package, and STREAM, the memory benchmark were evaluated and compared on commercial cloud systems to provide information for the transition of other ocean models into cloud computing. Through analysis of actual performance data and configuration settings obtained from virtualization-based commercial clouds, we evaluated the efficiency of the computer resources for the various model grid sizes in the virtualization-based cloud systems. We found that cache hierarchy and capacity are crucial in the performance of ROMS using huge memory. The memory latency time is also important in the performance. Increasing the number of cores to reduce the running time for numerical modeling is more effective with large grid sizes than with small grid sizes. Our analysis results will be helpful as a reference for constructing the best computing system in the cloud to minimize time and cost for numerical ocean modeling.

An investigation of the User Research Techniques in the User-Centered Design Framework - Focused on the on-line community services development for 13-18 Young Adults (사용자 중심 디자인 프레임워크에서 사용자 조사기법의 역할에 관한 연구 - 13-18 청소년용 온라인 커뮤니티 컨텐트 개발 프로젝트를 중심으로)

  • 이종호
    • Archives of design research
    • /
    • v.17 no.2
    • /
    • pp.77-86
    • /
    • 2004
  • User-Centered Design Approach plays important role in dealing with usability issues for developing modern technology products. Yet it is still questionable whether the User-Centered approach is enough for the development of successful consumer contents since the User-Centered Design is originated from the software engineering field where meeting customers' functional requirement is the most critical aspect in developing a software. However, modern consumer market is already saturated and in order to meet ever increasing consumer requirements, the User-Centered Design approach needs to be expanded. As a way of incorporating the User-Centered Approach into the consumer product development, Jordan suggested the 'Pleasure-based Approach' in industrial design field, which usually generates multi-dimensional user requirements: 1)physical, 2)cognitive, 3)identity and 4) social. It is the current tendency that many portal and community service providers focus on fulfilling both functional and emotional needs for users when developing new items, contents and services. Previously fulfilling consumers' emotional needs solely depend on visual designer's graphical sense and capability. However, taking the customer-centered approach on withdrawing consumers' unknown needs is getting critical in the competitive market environment. This paper reviews different types of user research techniques and categorized into 6 ways based on Kano(1992)'s product quality model. Based on his theory, only performance factors, such as suability, can be identified through the user-centered design approach. The user-centered design approach has to be expanded to include factors include personality, sociability, pleasure, and so on. In order to identify performance as well as excellent factors through user research, a user-research framework was established and tested through the case study, which is ' the development of new online service for teens '. The results of the user research were summarized at the end of the paper and the pros and cons of each research techniques were analyzed.

  • PDF

A Lifelog Management System Based on the Relational Data Model and its Applications (관계 데이터 모델 기반 라이프로그 관리 시스템과 그 응용)

  • Song, In-Chul;Lee, Yu-Won;Kim, Hyeon-Gyu;Kim, Hang-Kyu;Haam, Deok-Min;Kim, Myoung-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.9
    • /
    • pp.637-648
    • /
    • 2009
  • As the cost of disks decreases, PCs are soon expected to be equipped with a disk of 1TB or more. Assuming that a single person generates 1GB of data per month, 1TB is enough to store data for the entire lifetime of a person. This has lead to the growth of researches on lifelog management, which manages what people see and listen to in everyday life. Although many different lifelog management systems have been proposed, including those based on the relational data model, based on ontology, and based on file systems, they have all advantages and disadvantages: Those based on the relational data model provide good query processing performance but they do not support complex queries properly; Those based on ontology handle more complex queries but their performances are not satisfactory: Those based on file systems support only keyword queries. Moreover, these systems are lack of support for lifelog group management and do not provide a convenient user interface for modifying and adding tags (metadata) to lifelogs for effective lifelog search. To address these problems, we propose a lifelog management system based on the relational data model. The proposed system models lifelogs by using the relational data model and transforms queries on lifelogs into SQL statements, which results in good query processing performance. It also supports a simplified relationship query that finds a lifelog based on other lifelogs directly related to it, to overcome the disadvantage of not supporting complex queries properly. In addition, the proposed system supports for the management of lifelog groups by providing ways to create, edit, search, play, and share them. Finally, it is equipped with a tagging tool that helps the user to modify and add tags conveniently through the ion of various tags. This paper describes the design and implementation of the proposed system and its various applications.

Design Information Management System Core Development Using Industry Foundation Classes (IFC를 이용한 설계정보관리시스템 핵심부 구축)

  • Lee Keun-hyung;Chin Sang-yoon;Kim Jae-jun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.1 no.2 s.2
    • /
    • pp.98-107
    • /
    • 2000
  • Increased use of computers in AEC (Architecture, Engineering and Construction) has expanded the amount of information gained from CAD (Computer Aided Design), PMIS (Project Management Information System), Structural Analysis Program, and Scheduling Program as well as making it more complex. And the productivity of AEC industry is largely dependent on well management and efficient reuse of this information. Accordingly, such trend incited much research and development on ITC (Information Technology in Construction) and CIC (Computer Integrated Construction) to be conducted. In exemplifying such effort, many researchers studied and researched on IFC (Industry Foundation Classes) since its development by IAI (International Alliance for Interoperability) for the product based information sharing. However, in spite of some valuable outputs, these researches are yet in the preliminary stage and deal mainly with conceptual ideas and trial implementations. Research on unveiling the process of the IFC application development, the core of the Design Information management system, and its applicable plan still need be done. Thus, the purpose of this paper is to determine the technologies needed for Design Information management system using IFC, and to present the key roles and the process of the IFC application development and its applicable plan. This system play a role to integrate the architectural information and the structural information into the product model and to group many each product items with various levels and aspects. To make the process model, we defined two activities, 'Product Modeling', 'Application Development', at the initial level. Then we decomposed the Application Development activity into five activities, 'IFC Schema Compile', 'Class Compile', 'Make Project Database Schema', 'Development of Product Frameworker', 'Make Project Database'. These activities are carried out by C++ Compiler, CAD, ObjectStore, ST-Developer, and ST-ObjectStore. Finally, we proposed the applicable process with six stages, '3D Modeling', 'Creation of Product Information', 'Creation and Update of Database', 'Reformation of Model's Structure with Multiple Hierarchies', 'Integration of Drawings and Specifications', and 'Creation of Quantity Information'. The IFCs, including the other classes which are going to be updated and developed newly on the construction, civil/structure, and facility management, will be used by the experts through the internet distribution technologies including CORBA and DCOM.

  • PDF

Current and Future Perspectives of Lung Organoid and Lung-on-chip in Biomedical and Pharmaceutical Applications

  • Junhyoung Lee;Jimin Park;Sanghun Kim;Esther Han;Sungho Maeng;Jiyou Han
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.339-355
    • /
    • 2024
  • The pulmonary system is a highly complex system that can only be understood by integrating its functional and structural aspects. Hence, in vivo animal models are generally used for pathological studies of pulmonary diseases and the evaluation of inhalation toxicity. However, to reduce the number of animals used in experimentation and with the consideration of animal welfare, alternative methods have been extensively developed. Notably, the Organization for Economic Co-operation and Development (OECD) and the United States Environmental Protection Agency (USEPA) have agreed to prohibit animal testing after 2030. Therefore, the latest advances in biotechnology are revolutionizing the approach to developing in vitro inhalation models. For example, lung organ-on-a-chip (OoC) and organoid models have been intensively studied alongside advancements in three-dimensional (3D) bioprinting and microfluidic systems. These modeling systems can more precisely imitate the complex biological environment compared to traditional in vivo animal experiments. This review paper addresses multiple aspects of the recent in vitro modeling systems of lung OoC and organoids. It includes discussions on the use of endothelial cells, epithelial cells, and fibroblasts composed of lung alveoli generated from pluripotent stem cells or cancer cells. Moreover, it covers lung air-liquid interface (ALI) systems, transwell membrane materials, and in silico models using artificial intelligence (AI) for the establishment and evaluation of in vitro pulmonary systems.

Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads (혼합모드 하중을 받는 균열시편의 피로균열진전거동 평가)

  • Han, Jeong Woo;Woo, Eun Taek;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.693-700
    • /
    • 2015
  • To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka's equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka's equation, and the Paris' equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%.

Improvement for Impact Assessment of Marine Physical on the Development of Ports and Fishing Harbors in the East Coast (동해안 항만 및 어항 개발사업에 따른 해양물리학적 영향평가 개선방안)

  • Kim, In-Cheol;Kim, Gui-Young;Jeon, Kyeong-Am;Eom, Ki-Hyuk;Yu, Jun;Lee, Dae-In;Kim, Young-Tae;Kim, Hee-Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.2
    • /
    • pp.111-118
    • /
    • 2013
  • This paper suggested the improvement of marine environmental impact assessment in eastern coast as analyzing consultation on the coastal area utilization for development of ports and fishing harbors for 3years in the east coast. The results of survey are only 3cases, 12cases and 16cases each for ocean currents, wave and sounding data. However, for development of ports and fishing harbors in eastern coast, ocean characteristics in eastern coast different than in the West Sea, South Sea is considered to marine environmental impact assessment. For development of ports and fishing harbors in east coast where the influences of ocean currents, wind-driven current and waves are dominant, the effect of the current should be considered to improve the reproducibility of tidal current. The wave should also be considered as an assessment criteria to obtain the validity of project such as harbor tranquility, functionality of breakwaters and stability. In addition, sediment inflow in river and exact water depth data of the ocean should be applied to numerical modeling and set wave-induced current to external force of sediment transport to predict the problems such as the harbor siltation and the coastal erosion considering ocean characteristics in the east coast.

IFC Property Set-based Approach for Generating Semantic Information of Steel Box Girder Bridge Components (IFC Property Set을 활용한 강박스교 구성요소의 의미정보 생성)

  • Lee, Sang-Ho;Park, Sang Il;Park, Kun-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.687-697
    • /
    • 2014
  • This study ranges from planning phase to the detailed design phase of steel box girder bridge and proposes ways to generate semantic information of components through Industry Foundation Classes (IFC), a data model for Building Information Modeling (BIM). The classification of components of steel box girder bridge was performed to define information items required for identifying semantic information based on IFC, and spatial information items based on topology and physical information items based on functions of components were classified to create additional properties that does not support IFC by applying user-defined property set within the IFC framework. Steel box girder bridge information model based on IFC was implemented through BIM software and semantic information input interface, which was developed in this study to examine the effectiveness of the additionally created user-defined property. Furthermore, the quantity take-off of components was performed through information model of steel box girder bridge, and the applicability of the proposed method was tested by comparing the quantity take-off based on design document with the result.