• Title/Summary/Keyword: 기계 학습.훈련

Search Result 130, Processing Time 0.027 seconds

Reinforcement learning-based behavior control of a grid-type system for sorting parcels (소포물 분류를 위한 그리드 타입 시스템의 강화 학습 기반 행동 제어)

  • Choi, Ho-Bin;Kim, Ju-Bong;Hwang, Gyu-Young;Han, Youn-Hee
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.585-586
    • /
    • 2020
  • 공정 데이터를 실시간으로 수집할 수 있는 스마트 팩토리의 장점을 활용하여, 일반적인 기계 학습 대신 강화 학습을 사용한다면 미리 요구되는 훈련 데이터 없이 행동 제어를 할 수 있다. 하지만, 현실 세계에서는 물리적 마모, 시간적 문제 등으로 인해 수천만 번 이상의 반복 학습이 불가능하다. 따라서, 본 논문에서는 시뮬레이터를 활용해 스마트 팩토리 분야에서 복잡한 환경 중 하나인 이송 설비에 초점을 둔 그리드 분류 시스템을 개발하고 협력적 다중 에이전트 기반의 강화 학습을 설계하여 효율적인 행동 제어가 가능함을 입증한다.

Experiment and Implementation of a Machine-Learning Based k-Value Prediction Scheme in a k-Anonymity Algorithm (k-익명화 알고리즘에서 기계학습 기반의 k값 예측 기법 실험 및 구현)

  • Muh, Kumbayoni Lalu;Jang, Sung-Bong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 2020
  • The k-anonymity scheme has been widely used to protect private information when Big Data are distributed to a third party for research purposes. When the scheme is applied, an optimal k value determination is one of difficult problems to be resolved because many factors should be considered. Currently, the determination has been done almost manually by human experts with their intuition. This leads to degrade performance of the anonymization, and it takes much time and cost for them to do a task. To overcome this problem, a simple idea has been proposed that is based on machine learning. This paper describes implementations and experiments to realize the proposed idea. In thi work, a deep neural network (DNN) is implemented using tensorflow libraries, and it is trained and tested using input dataset. The experiment results show that a trend of training errors follows a typical pattern in DNN, but for validation errors, our model represents a different pattern from one shown in typical training process. The advantage of the proposed approach is that it can reduce time and cost for experts to determine k value because it can be done semi-automatically.

Recent Automatic Post Editing Research (최신 기계번역 사후 교정 연구)

  • Moon, Hyeonseok;Park, Chanjun;Eo, Sugyeong;Seo, Jaehyung;Lim, Heuiseok
    • Journal of Digital Convergence
    • /
    • v.19 no.7
    • /
    • pp.199-208
    • /
    • 2021
  • Automatic Post Editing(APE) is the study that automatically correcting errors included in the machine translated sentences. The goal of APE task is to generate error correcting models that improve translation quality, regardless of the translation system. For training these models, source sentence, machine translation, and post edit, which is manually edited by human translator, are utilized. Especially in the recent APE research, multilingual pretrained language models are being adopted, prior to the training by APE data. This study deals with multilingual pretrained language models adopted to the latest APE researches, and the specific application method for each APE study. Furthermore, based on the current research trend, we propose future research directions utilizing translation model or mBART model.

Context-sensitive Spelling Error Correction using Feed-Forward Neural Network (Feed-Forward Neural Network를 이용한 문맥의존 철자오류 교정)

  • Hwang, Hyunsun;Lee, Changki
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.124-128
    • /
    • 2015
  • 문맥의존 철자오류는 해당 단어만 봤을 때에는 오류가 아니지만 문맥상으로는 오류인 문제를 말한다. 이러한 문제를 해결하기 위해서는 문맥정보를 보아야 하지만, 형태소 분석 단계에서는 자세한 문맥 정보를 보기 어렵다. 본 논문에서는 형태소 분석 정보만을 이용한 철자오류 수정을 위한 문맥으로 사전훈련(pre-training)된 단어 표현(Word Embedding)를 사용하고, 기존의 기계학습 알고리즘보다 좋다고 알려진 딥 러닝(Deep Learning) 기술을 적용한 시스템을 제안한다. 실험결과, 기존의 기계학습 알고리즘인 Structural SVM보다 높은 F1-measure 91.61 ~ 98.05%의 성능을 보였다.

  • PDF

The study of Method for Optimization of Phrase Ordering Process and Word Alignment between Parallel Languages in Korean-English Statistic Based Machine Translation (영한 및 한영 통계기반 기계번역에서의 이중언어 간 어순처리 및 단어정렬 최적화 방안 연구)

  • Chong, Sang-won
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.293-296
    • /
    • 2013
  • 통계기반 기계번역 시스템 (SBMT system)은 기계번역시스템 중에서 최근 활발히 연구되고 있는 분야이다. 통계기반 기계번역은 대용량의 말뭉치를 사용할 수 있어 특정 언어 쌍에 제한을 덜 받아 모델을 자동으로 학습할 수 있으며 다른 언어에 일반화하여 적용이 가능하다는 장점이 있다. 그러나 영어와 한국어 간 통계기반 기계번역에 있어서는 어순의 차이로 인한 문제를 해결할 필요성이 여전히 남아 있다. 이에 본 연구에서는 영어와 한국어 간 이중언어 말뭉치를 구축하고 통계기반 기계번역 훈련 시스템인 Moses 에 기반하여 구현한 베이스 시스템을 이용하여 이중언어 간 어순처리 및 단어정렬의 최적화 방안을 연구하였다.

가상 개발환경 기반의 차량용 사이버훈련 프레임워크 설계: 공격 중심으로

  • YoungBok Jo;Subin Choi;OH ByeongYun;YongHo Choi;Hojun Kim;Seonghoon Jeong;Byung Il Kwak;Mee Lan Han
    • Review of KIISC
    • /
    • v.33 no.4
    • /
    • pp.23-29
    • /
    • 2023
  • 대부분의 임베디드 시스템은 기계장치와 전자기기 장치가 함께 작동되는 물리 장치로써, 이기종 네트워크, 복잡한 보안체계 등을 고려하여 가상화 기반 사이버훈련 환경이 구성되어야 한다. 또한, 차량을 대상으로 물리적인 실험환경에서 모의침투 등 사이버훈련을 수행한다는 것은 교통사고를 비롯한 안전사고 발생에 있어 위험이 존재한다. 본 논문에서는 가상 개발환경에서의 공격 기반 차량용 사이버훈련 프레임워크를 제안하고자 한다. 먼저, 공격 기반 차량용 사이버훈련 프레임워크의 작동은 자동 활성화되는 가상의 CAN 네트워크 인터페이스로 시작된다. 가상의 CAN 네트워크 인터페이스는 가상 머신에서 간단한 부트스트랩 명령어 실행을 통해 파이썬 패키지와 Ubuntu 서비스 목록 설치 명령이 자동으로 실행되면서 설치된다. 이후 내부 네트워크 시뮬레이터와 공격모듈과 관련된 UI가 자동으로 Ubuntu Systemd에 의해 백그라운드에서 실행되어 시작과 동시에 준비 상태를 유지하게 된다. 사이버훈련 UI 내 공격 모듈은 사용자에 의한 공격 선택 및 파라미터 셋팅 이후 차량의 이상 상태를 사이버훈련 UI에 다시 출력되게 된다. 본 논문에서 제안하는 가상 개발환경 기반의 차량용 사이버훈련 프레임워크는 자율주행 차량 사고의 위험이나 다른 특수한 제약 없이 사용자의 학습 경험을 확장시킬 수 있다. 또한, 기존의 가상화 기반 사이버훈련 교육 콘텐츠와는 달리 일반 사용자들이 접근하기 쉬운 형태로 확장 개발이 가능하다.

Multi-Variate Tabular Data Processing and Visualization Scheme for Machine Learning based Analysis: A Case Study using Titanic Dataset (기계 학습 기반 분석을 위한 다변량 정형 데이터 처리 및 시각화 방법: Titanic 데이터셋 적용 사례 연구)

  • Juhyoung Sung;Kiwon Kwon;Kyoungwon Park;Byoungchul Song
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.121-130
    • /
    • 2024
  • As internet and communication technology (ICT) is improved exponentially, types and amount of available data also increase. Even though data analysis including statistics is significant to utilize this large amount of data, there are inevitable limits to process various and complex data in general way. Meanwhile, there are many attempts to apply machine learning (ML) in various fields to solve the problems according to the enhancement in computational performance and increase in demands for autonomous systems. Especially, data processing for the model input and designing the model to solve the objective function are critical to achieve the model performance. Data processing methods according to the type and property have been presented through many studies and the performance of ML highly varies depending on the methods. Nevertheless, there are difficulties in deciding which data processing method for data analysis since the types and characteristics of data have become more diverse. Specifically, multi-variate data processing is essential for solving non-linear problem based on ML. In this paper, we present a multi-variate tabular data processing scheme for ML-aided data analysis by using Titanic dataset from Kaggle including various kinds of data. We present the methods like input variable filtering applying statistical analysis and normalization according to the data property. In addition, we analyze the data structure using visualization. Lastly, we design an ML model and train the model by applying the proposed multi-variate data process. After that, we analyze the passenger's survival prediction performance of the trained model. We expect that the proposed multi-variate data processing and visualization can be extended to various environments for ML based analysis.

Comparative Analysis of Dimensionality Reduction Techniques for Advanced Ransomware Detection with Machine Learning (기계학습 기반 랜섬웨어 공격 탐지를 위한 효과적인 특성 추출기법 비교분석)

  • Kim Han Seok;Lee Soo Jin
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.117-123
    • /
    • 2023
  • To detect advanced ransomware attacks with machine learning-based models, the classification model must train learning data with high-dimensional feature space. And in this case, a 'curse of dimension' phenomenon is likely to occur. Therefore, dimensionality reduction of features must be preceded in order to increase the accuracy of the learning model and improve the execution speed while avoiding the 'curse of dimension' phenomenon. In this paper, we conducted classification of ransomware by applying three machine learning models and two feature extraction techniques to two datasets with extremely different dimensions of feature space. As a result of the experiment, the feature dimensionality reduction techniques did not significantly affect the performance improvement in binary classification, and it was the same even when the dimension of featurespace was small in multi-class clasification. However, when the dataset had high-dimensional feature space, LDA(Linear Discriminant Analysis) showed quite excellent performance.

Identification of Mesiodens Using Machine Learning Application in Panoramic Images (기계 학습 어플리케이션을 활용한 파노라마 영상에서의 정중 과잉치 식별)

  • Seung, Jaegook;Kim, Jaegon;Yang, Yeonmi;Lim, Hyungbin;Le, Van Nhat Thang;Lee, Daewoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.2
    • /
    • pp.221-228
    • /
    • 2021
  • The aim of this study was to evaluate the use of easily accessible machine learning application to identify mesiodens, and to compare the ability to identify mesiodens between trained model and human. A total of 1604 panoramic images (805 images with mesiodens, 799 images without mesiodens) of patients aged 5 - 7 years were used for this study. The model used for machine learning was Google's teachable machine. Data set 1 was used to train model and to verify the model. Data set 2 was used to compare the ability between the learning model and human group. As a result of data set 1, the average accuracy of the model was 0.82. After testing data set 2, the accuracy of the model was 0.78. From the resident group and the student group, the accuracy was 0.82, 0.69. This study developed a model for identifying mesiodens using panoramic radiographs of children in primary and early mixed dentition. The classification accuracy of the model was lower than that of the resident group. However, the classification accuracy (0.78) was higher than that of dental students (0.69), so it could be used to assist the diagnosis of mesiodens for non-expert students or general dentists.

A Study on Curricula Development to Accommodate Both Course-Based National Technique Qualification Program and NCS Based Certificate Program of Work and Study in Parallel: A Case on the Qualification of Mechanical Design Engineer (일학습병행제 NCS기반자격과 과정평가형 국가기술자격 연계 과정 개발 연구: 기계설계기사 자격 사례)

  • Choi, Hwan Young
    • Journal of Practical Engineering Education
    • /
    • v.11 no.1
    • /
    • pp.51-59
    • /
    • 2019
  • This study includes the possibility of organizing courses that can accommodate both NCS-based and course-based qualifications program in terms of contracting departments operating a college-based work and study in parallel system, examining and comparing differences between the two qualifications. Based on the case study of mechanical design engineer based on the job of machine design, curriculum that meets both composition regulation is developed. The author predicts future operational differences and problems and suggests several ways to overcome them. In conclusion, a few words have been added to modify the composition regulations to help the professional educational institute that simultaneously operates a work parallel system and a course evaluation type as to develop the field-oriented curriculum minimizing the gap between provider-centered education and consumer-centered qualifications, and maximizing the performance of training and education.