• 제목/요약/키워드: 기계 학습.훈련

Search Result 130, Processing Time 0.025 seconds

Motion Response Estimation of Fishing Boats Using Deep Neural Networks (심층신경망을 이용한 어선의 운동응답 추정)

  • TaeWon Park;Dong-Woo Park;JangHoon Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.958-963
    • /
    • 2023
  • Lately, there has been increasing research on the prediction of motion performance using artificial intelligence for the safe design and operation of ships. However, compared to conventional ships, research on small fishing boats is insufficient. In this paper, we propose a model that estimates the motion response essential for calculating the motion performance of small fishing boats using a deep neural network. Hydrodynamic analysis was conducted on 15 small fishing boats, and a database was established. Environmental conditions and main particulars were applied as input data, and the response amplitude operators were utilized as the output data. The motion response predicted by the trained deep neural network model showed similar trends to the hydrodynamic analysis results. The results showed that the high-frequency motion responses were predicted well with a low error. Based on this study, we plan to extend existing research by incorporating the hull shape characteristics of fishing boats into a deep neural network model.

A Study on Automatic Vehicle Extraction within Drone Image Bounding Box Using Unsupervised SVM Classification Technique (무감독 SVM 분류 기법을 통한 드론 영상 경계 박스 내 차량 자동 추출 연구)

  • Junho Yeom
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.95-102
    • /
    • 2023
  • Numerous investigations have explored the integration of machine leaning algorithms with high-resolution drone image for object detection in urban settings. However, a prevalent limitation in vehicle extraction studies involves the reliance on bounding boxes rather than instance segmentation. This limitation hinders the precise determination of vehicle direction and exact boundaries. Instance segmentation, while providing detailed object boundaries, necessitates labour intensive labelling for individual objects, prompting the need for research on automating unsupervised instance segmentation in vehicle extraction. In this study, a novel approach was proposed for vehicle extraction utilizing unsupervised SVM classification applied to vehicle bounding boxes in drone images. The method aims to address the challenges associated with bounding box-based approaches and provide a more accurate representation of vehicle boundaries. The study showed promising results, demonstrating an 89% accuracy in vehicle extraction. Notably, the proposed technique proved effective even when dealing with significant variations in spectral characteristics within the vehicles. This research contributes to advancing the field by offering a viable solution for automatic and unsupervised instance segmentation in the context of vehicle extraction from image.

A Methodology of Decision Making Condition-based Data Modeling for Constructing AI Staff (AI 참모 구축을 위한 의사결심조건의 데이터 모델링 방안)

  • Han, Changhee;Shin, Kyuyong;Choi, Sunghun;Moon, Sangwoo;Lee, Chihoon;Lee, Jong-kwan
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.237-246
    • /
    • 2020
  • this paper, a data modeling method based on decision-making conditions is proposed for making combat and battlefield management systems to be intelligent, which are also a decision-making support system. A picture of a robot seeing and perceiving like humans and arriving a point it wanted can be understood and be felt in body. However, we can't find an example of implementing a decision-making which is the most important element in human cognitive action. Although the agent arrives at a designated office instead of human, it doesn't support a decision of whether raising the market price is appropriate or doing a counter-attack is smart. After we reviewed a current situation and problem in control & command of military, in order to collect a big data for making a machine staff's advice to be possible, we propose a data modeling prototype based on decision-making conditions as a method to change a current control & command system. In addition, a decision-making tree method is applied as an example of the decision making that the reformed control & command system equipped with the proposed data modeling will do. This paper can contribute in giving us an insight of how a future AI decision-making staff approaches to us.

Roles and Preparation for the Future Nurse-Educators (미래 간호교육자의 역할과 이를 위한 준비)

  • Kim Susie
    • The Korean Nurse
    • /
    • v.20 no.4 s.112
    • /
    • pp.39-49
    • /
    • 1981
  • 기존 간호 영역 내 간호는 질적으로, 양적으로 급격히 팽창 확대되어 가고 있다. 많은 나라에서 건강관리체계가 부적절하게 분배되어 있으며 따라서 많은 사람들이 적절한 건강관리를 제공받지 못하고 있어 수준 높은 양질의 건강관리를 전체적으로 확대시키는 것이 시급하다. 혹 건강관리의 혜택을 받는다고 해도 이들 역시 보다 더 양질의 인간적인 간호를 요하고 있는 실정이다. 간호는 또한 간호영역 자체 내에서도 급격히 확대되어가고 있다. 예를들면, 미국같은 선진국가의 건강간호사(Nurse practitioner)는 간호전문직의 새로운 직종으로 건강관리체계에서 독자적인 실무자로 그 두각을 나타내고 있다. 의사의 심한 부족난으로 고심하는 발전도상에 있는 나라들에서는 간호원들에게 전통적인 간호기능 뿐 아니라 건강관리체계에서 보다 많은 역할을 수행하도록 기대하며 일선지방의 건강센터(Health center) 직종에 많은 간호원을 투입하고 있다. 가령 우리 한국정부에서 최근에 시도한 무의촌지역에서 졸업간호원들이 건강관리를 제공할 수 있도록 한 법적 조치는 이러한 구체적인 예라고 할 수 있다. 기존 간호영역내외의 이런 급격한 변화는 Melvin Toffler가 말한 대로 ''미래의 충격''을 초래하게 되었다. 따라서 이러한 역동적인 변화는 간호전문직에 대하여 몇가지 질문을 던져준다. 첫째, 미래사회에서 간호영역의 특성은 무엇인가? 둘째, 이러한 새로운 영역에서 요구되는 간호원을 길러내기 위해 간호교육자는 어떤 역할을 수행해야 하는가? 셋째 내일의 간호원을 양성하는 간호교육자를 준비시키기 위한 실질적이면서도 현실적인 전략은 무엇인가 등이다. 1. 미래사회에서 간호영역의 특성은 무엇인가? 미래의 간호원은 다음에 열거하는 여러가지 요인으로 인하여 지금까지의 것과는 판이한 환경에서 일하게 될 것이다. 1) 건강관리를 제공하는 과정에서 컴퓨터화되고 자동화된 기계 및 기구 등 새로운 기술을 많이 사용할 것이다. 2) 1차건강관리가 대부분 간호원에 의해 제공될 것이다. 3) 내일의 건강관리는 소비자 주축의 것이 될 것이다. 4) 간호영역내에 많은 새로운 전문분야들이 생길 것이다. 5) 미래의 건강관리체계는 사회적인 변화와 이의 요구에 더 민감한 반응을 하게 될 것이다. 6) 건강관리체계의 강조점이 의료진료에서 건강관리로 바뀔 것이다. 7) 건강관리체계에서의 간호원의 역할은 의료적인 진단과 치료계획의 기능에서 크게 탈피하여 병원내외에서 보다 더 독특한 실무형태로 발전될 것이다. 이러한 변화와 더불어 미래 간호영역에서 보다 효과적인 간호를 수행하기 위해 미래 간호원들은 지금까지의 간호원보다 더 광범위하고 깊은 교육과 훈련을 받아야 한다. 보다 발전된 기술환경에서 전인적인 접근을 하기위해 신체과학이나 의학뿐 아니라 행동과학 $\cdot$ 경영과학 등에 이르기까지 다양한 훈련을 받아야 할 필요가 있다. 또한 행동양상면에서 전문직인 답게 보다 진취적이고 표현적이며 자동적이고 응용과학적인 역할을 수행하도록 훈련을 받아야 한다. 그리하여 간호원은 효과적인 의사결정자$\cdot$문제해결자$\cdot$능숙한 실무자일 뿐 아니라 소비자의 건강요구를 예리하게 관찰하고 이 요구에 효과적인 존재를 발전시켜 나가는 연구자가 되어야 한다. 2. 미래의 간호교육자는 어떤 역할을 수행해야 하는가? 간호교육은 전문직으로서의 실무를 제공하기 위한 기초석이다. 이는 간호교육자야말로 미래사회에서 국민의 건강요구를 충족시키기는 능력있는 간호원을 공급하는 일에 전무해야 함을 시사해준다. 그러면 이러한 일을 달성하기 위해 간호교육자는 무엇을 해야 하는가? 우선 간호교육자는 두가지 측면에서 이 일을 수정해야 된다고 본다. 그 하나는 간호교육기관에서의 측면이고 다른 하나는 간호교육자 개인적인 측면엣서이다. 우선 간호교육기관에서 간호교육자는 1) 미래사회에서 요구되는 간호원을 교육시키기 위한 프로그램을 제공해야 한다. 2) 효과적인 교과과정의 발전과 수정보완을 계속적으로 진행시켜야 한다. 3) 잘된 교과과정에 따라 적절한 훈련을 철저히 시켜야 한다. 4) 간호교육자 자신이 미래의 예측된 현상을 오늘의 교육과정에 포함시킬 수 있는 자신감과 창의력을 가지고 모델이 되어야 한다. 5) 연구 및 학생들의 학습에 영향을 미치는 중요한 의사결정에 학생들을 참여시키도록 해야한다. 간호교육자 개인적인 측면에서는 교육자 자신들이 능력있고 신빙성있으며 간호의 이론$\cdot$실무$\cdot$연구면에 걸친 권위와 자동성$\cdot$독창성, 그리고 인간을 진정으로 이해하려는 자질을 갖추도록 계속 노력해야 한다. 3. 미래의 간호원을 양성하는 능력있는 간호교육자를 준비시키기 위한 실질적이면서도 현실적인 전략은 무엇인가? 내일의 도전을 충족시킬 수 있는 능력있는 간호교육자를 준비시키기 위한 실질적이고 현실적인 전략을 논함에 있어 우리나라의 실정을 참조하겠다. 전문직 간호교육자를 준비하는데 세가지 방법을 통해 할 수 있다고 생각한다. 첫째는 간호원 훈련수준을 전문직 실무를 수행할 수 있는 단계로 면허를 높이는 것이고, 둘째는 훈련수준을 더 향상시키기 위하여 학사 및 석사간호교육과정을 발전시키고 확대하는 것이며, 셋째는 현존하는 간호교육 프로그램의 질을 높이는 것이다. 첫째와 둘째방법은 정부의 관할이 직접 개입되는 방법이기 때문에 여기서는 생략하고 현존하는 교과과정을 발전시키고 그 질을 향상시키는 것에 대해서만 언급하고자 한다. 미래의 여러가지 도전에 부응할 수 있는 교육자를 준비시키는 교육과정의 발전을 두가지 면에서 추진시킬 수 있다고 본다. 첫째는 국제간의 교류를 통하여 idea 및 경험을 나눔으로서 교육과정의 질을 높일 수 있다. 서로 다른 나라의 간호교육자들이 정기적으로 모여 생각과 경험을 교환하고 연구하므로서 보다 체계적이고 효과적인 발전체인(chain)이 형성되는 것이다. ICN같은 국제적인 조직에 의해 이러한 모임을 시도하는 것인 가치있는 기회라고 생각한다. 국가간 또는 국제적인 간호교육자 훈련을 위한 교육과정의 교환은 한 나라안에서 그 idea를 확산시키는데 효과적인 영향을 미칠 수 있다. 충분한 간호교육전문가를 갖춘 간호교육기관이 새로운 교육과정을 개발하여 그렇지 못한 기관과의 연차적인 conference를 가지므로 확산시킬 수도 있으며 이런 방법은 경제적인 면에서도 효과적일 뿐만 아니라 그 나라 그 문화상황에 적합한 교과과정 개발에도 효과적일 수 있다. 간호교육자를 준비시키는 둘째전략은 현존간호교육자들이 간호이론과 실무$\cdot$연구를 통합하고 발전시키는데 있어서 당면하는 여러가지 요인-전인적인 간호에 적절한 과목을 이수하지 못하고 임상실무경험의 부족등-을 보충하는 방법이다. 이런 실제적인 문제를 잠정적으로 해결하기 위하여 1) 몇몇 대학에서 방학중에 계속교육 프로그램을 개발하여 현직 간호교육자들에게 필요하고 적절한 과목을 이수하도록 한다. 따라서 임상실무교육도 이때 실시할 수 있다. 2) 대학원과정 간호교육프로그램의 입학자의 자격에 2$\~$3년의 실무경험을 포함시키도록 한다. 결론적으로 교수와 학생간의 진정한 동반자관계는 자격을 구비한 능력있는 교수의 실천적인 모델을 통하여서 가능하게 이루어 질수 있다고 믿는 바이다.

  • PDF

Region of Interest (ROI) Selection of Land Cover Using SVM Cross Validation (SVM 교차검증을 활용한 토지피복 ROI 선정)

  • Jeong, Jong-Chul;Youn, Hyoung-Jin
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.75-85
    • /
    • 2020
  • This study examines machine learning cross-validation to utilized create ROI for classification of land cover. The study area located in Sejong and one KOMPSAT-3A image was used in this analysis: procedure on October 28, 2019. We used four bands(Red, Green, Blue, Near infra-red) for learning cross validation process. In this study, we used K-fold method in cross validation and used SVM kernel type with cross validation result. In addition, we used 4 kernels of SVM(Linear, Polynomial, RBF, Sigmoid) for supervised classification land cover map using extracted ROI. During the cross validation process, 1,813 data extracted from 3,500 data, and the most of the building, road and grass class data were removed about 60% during cross validation process. Based on this, the supervised SVM linear technique showed the highest classification accuracy of 91.77% compared to other kernel methods. The grass' producer accuracy showed 79.43% and identified a large mis-classification in forests. Depending on the results of the study, extraction ROI using cross validation may be effective in forest, water and agriculture areas, but it is deemed necessary to improve the distinction of built-up, grass and bare-soil area.

Convergence of Artificial Intelligence Techniques and Domain Specific Knowledge for Generating Super-Resolution Meteorological Data (기상 자료 초해상화를 위한 인공지능 기술과 기상 전문 지식의 융합)

  • Ha, Ji-Hun;Park, Kun-Woo;Im, Hyo-Hyuk;Cho, Dong-Hee;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.63-70
    • /
    • 2021
  • Generating a super-resolution meteological data by using a high-resolution deep neural network can provide precise research and useful real-life services. We propose a new technique of generating improved training data for super-resolution deep neural networks. To generate high-resolution meteorological data with domain specific knowledge, Lambert conformal conic projection and objective analysis were applied based on observation data and ERA5 reanalysis field data of specialized institutions. As a result, temperature and humidity analysis data based on domain specific knowledge showed improved RMSE by up to 42% and 46%, respectively. Next, a super-resolution generative adversarial network (SRGAN) which is one of the aritifial intelligence techniques was used to automate the manual data generation technique using damain specific techniques as described above. Experiments were conducted to generate high-resolution data with 1 km resolution from global model data with 10 km resolution. Finally, the results generated with SRGAN have a higher resoltuion than the global model input data, and showed a similar analysis pattern to the manually generated high-resolution analysis data, but also showed a smooth boundary.

Evaluation and Predicting PM10 Concentration Using Multiple Linear Regression and Machine Learning (다중선형회귀와 기계학습 모델을 이용한 PM10 농도 예측 및 평가)

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1711-1720
    • /
    • 2020
  • Particulate matter (PM) that has been artificially generated during the recent of rapid industrialization and urbanization moves and disperses according to weather conditions, and adversely affects the human skin and respiratory systems. The purpose of this study is to predict the PM10 concentration in Seoul using meteorological factors as input dataset for multiple linear regression (MLR), support vector machine (SVM), and random forest (RF) models, and compared and evaluated the performance of the models. First, the PM10 concentration data obtained at 39 air quality monitoring sites (AQMS) in Seoul were divided into training and validation dataset (8:2 ratio). The nine meteorological factors (mean, maximum, and minimum temperature, precipitation, average and maximum wind speed, wind direction, yellow dust, and relative humidity), obtained by the automatic weather system (AWS), were composed to input dataset of models. The coefficients of determination (R2) between the observed PM10 concentration and that predicted by the MLR, SVM, and RF models was 0.260, 0.772, and 0.793, respectively, and the RF model best predicted the PM10 concentration. Among the AQMS used for model validation, Gwanak-gu and Gangnam-daero AQMS are relatively close to AWS, and the SVM and RF models were highly accurate according to the model validations. The Jongno-gu AQMS is relatively far from the AWS, but since PM10 concentration for the two adjacent AQMS were used for model training, both models presented high accuracy. By contrast, Yongsan-gu AQMS was relatively far from AQMS and AWS, both models performed poorly.

Anomaly Detection for User Action with Generative Adversarial Networks (적대적 생성 모델을 활용한 사용자 행위 이상 탐지 방법)

  • Choi, Nam woong;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.43-62
    • /
    • 2019
  • At one time, the anomaly detection sector dominated the method of determining whether there was an abnormality based on the statistics derived from specific data. This methodology was possible because the dimension of the data was simple in the past, so the classical statistical method could work effectively. However, as the characteristics of data have changed complexly in the era of big data, it has become more difficult to accurately analyze and predict the data that occurs throughout the industry in the conventional way. Therefore, SVM and Decision Tree based supervised learning algorithms were used. However, there is peculiarity that supervised learning based model can only accurately predict the test data, when the number of classes is equal to the number of normal classes and most of the data generated in the industry has unbalanced data class. Therefore, the predicted results are not always valid when supervised learning model is applied. In order to overcome these drawbacks, many studies now use the unsupervised learning-based model that is not influenced by class distribution, such as autoencoder or generative adversarial networks. In this paper, we propose a method to detect anomalies using generative adversarial networks. AnoGAN, introduced in the study of Thomas et al (2017), is a classification model that performs abnormal detection of medical images. It was composed of a Convolution Neural Net and was used in the field of detection. On the other hand, sequencing data abnormality detection using generative adversarial network is a lack of research papers compared to image data. Of course, in Li et al (2018), a study by Li et al (LSTM), a type of recurrent neural network, has proposed a model to classify the abnormities of numerical sequence data, but it has not been used for categorical sequence data, as well as feature matching method applied by salans et al.(2016). So it suggests that there are a number of studies to be tried on in the ideal classification of sequence data through a generative adversarial Network. In order to learn the sequence data, the structure of the generative adversarial networks is composed of LSTM, and the 2 stacked-LSTM of the generator is composed of 32-dim hidden unit layers and 64-dim hidden unit layers. The LSTM of the discriminator consists of 64-dim hidden unit layer were used. In the process of deriving abnormal scores from existing paper of Anomaly Detection for Sequence data, entropy values of probability of actual data are used in the process of deriving abnormal scores. but in this paper, as mentioned earlier, abnormal scores have been derived by using feature matching techniques. In addition, the process of optimizing latent variables was designed with LSTM to improve model performance. The modified form of generative adversarial model was more accurate in all experiments than the autoencoder in terms of precision and was approximately 7% higher in accuracy. In terms of Robustness, Generative adversarial networks also performed better than autoencoder. Because generative adversarial networks can learn data distribution from real categorical sequence data, Unaffected by a single normal data. But autoencoder is not. Result of Robustness test showed that he accuracy of the autocoder was 92%, the accuracy of the hostile neural network was 96%, and in terms of sensitivity, the autocoder was 40% and the hostile neural network was 51%. In this paper, experiments have also been conducted to show how much performance changes due to differences in the optimization structure of potential variables. As a result, the level of 1% was improved in terms of sensitivity. These results suggest that it presented a new perspective on optimizing latent variable that were relatively insignificant.

Development of High-Resolution Fog Detection Algorithm for Daytime by Fusing GK2A/AMI and GK2B/GOCI-II Data (GK2A/AMI와 GK2B/GOCI-II 자료를 융합 활용한 주간 고해상도 안개 탐지 알고리즘 개발)

  • Ha-Yeong Yu;Myoung-Seok Suh
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1779-1790
    • /
    • 2023
  • Satellite-based fog detection algorithms are being developed to detect fog in real-time over a wide area, with a focus on the Korean Peninsula (KorPen). The GEO-KOMPSAT-2A/Advanced Meteorological Imager (GK2A/AMI, GK2A) satellite offers an excellent temporal resolution (10 min) and a spatial resolution (500 m), while GEO-KOMPSAT-2B/Geostationary Ocean Color Imager-II (GK2B/GOCI-II, GK2B) provides an excellent spatial resolution (250 m) but poor temporal resolution (1 h) with only visible channels. To enhance the fog detection level (10 min, 250 m), we developed a fused GK2AB fog detection algorithm (FDA) of GK2A and GK2B. The GK2AB FDA comprises three main steps. First, the Korea Meteorological Satellite Center's GK2A daytime fog detection algorithm is utilized to detect fog, considering various optical and physical characteristics. In the second step, GK2B data is extrapolated to 10-min intervals by matching GK2A pixels based on the closest time and location when GK2B observes the KorPen. For reflectance, GK2B normalized visible (NVIS) is corrected using GK2A NVIS of the same time, considering the difference in wavelength range and observation geometry. GK2B NVIS is extrapolated at 10-min intervals using the 10-min changes in GK2A NVIS. In the final step, the extrapolated GK2B NVIS, solar zenith angle, and outputs of GK2A FDA are utilized as input data for machine learning (decision tree) to develop the GK2AB FDA, which detects fog at a resolution of 250 m and a 10-min interval based on geographical locations. Six and four cases were used for the training and validation of GK2AB FDA, respectively. Quantitative verification of GK2AB FDA utilized ground observation data on visibility, wind speed, and relative humidity. Compared to GK2A FDA, GK2AB FDA exhibited a fourfold increase in spatial resolution, resulting in more detailed discrimination between fog and non-fog pixels. In general, irrespective of the validation method, the probability of detection (POD) and the Hanssen-Kuiper Skill score (KSS) are high or similar, indicating that it better detects previously undetected fog pixels. However, GK2AB FDA, compared to GK2A FDA, tends to over-detect fog with a higher false alarm ratio and bias.

Detail Focused Image Classifier Model for Traditional Images (전통문화 이미지를 위한 세부 자질 주목형 이미지 자동 분석기)

  • Kim, Kuekyeng;Hur, Yuna;Kim, Gyeongmin;Yu, Wonhee;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.85-92
    • /
    • 2017
  • As accessibility toward traditional cultural contents drops compared to its increase in production, the need for higher accessibility for continued management and research to exist. For this, this paper introduces an image classifier model for traditional images based on artificial neural networks, which converts the input image's features into a vector space and by utilizing a RNN based model it recognizes and compares the details of the input which enables the classification of traditional images. This enables the classifiers to classify similarly looking traditional images more precisely by focusing on the details. For the training of this model, a wide range of images were arranged and collected based on the format of the Korean information culture field, which contributes to other researches related to the fields of using traditional cultural images. Also, this research contributes to the further activation of demand, supply, and researches related to traditional culture.