• Title/Summary/Keyword: 기계 학습 알고리즘

Search Result 781, Processing Time 0.051 seconds

Vacant Technology Forecasting using Ensemble Model (앙상블모형을 이용한 공백기술예측)

  • Jun, Sung-Hae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.341-346
    • /
    • 2011
  • A vacant technology forecasting is an important issue in management of technology. The forecast of vacant technology leads to the growth of nation and company. So, we need the results of technology developments until now to predict the vacant technology. Patent is an objective thing of the results in research and development of technology. We study a predictive method for forecasting the vacant technology quantitatively using patent data in this paper. We propose an ensemble model that is to vote some clustering criteria because we can't guarantee a model is optimal. Therefore, an objective and accurate forecasting model of vacant technology is researched in our paper. This model combines statistical analysis methods with machine learning algorithms. To verify our performance evaluation objectively, we make experiments using patent documents of diverse technology fields.

Distributed Support Vector Machines for Localization on a Sensor Newtork (센서 네트워크에서 위치 측정을 위한 분산 지지 벡터 머신)

  • Moon, Sangook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.944-946
    • /
    • 2014
  • Localization of a sensor network node using machine learning has been recently studied. It is easy for Support vector machines algorithm to implement in high level language enabling parallelism. In this paper, we realized Support vector machine using python language and built a sensor network cluster with 5 Pi's. We also established a Hadoop software framework to employ MapReduce mechanism. We modified the existing Support vector machine algorithm to fit into the distributed hadoop architecture system for localization of a sensor node. In our experiment, we implemented the test sensor network with a variety of parameters and examined based on proficiency, resource evaluation, and processing time.

  • PDF

Real-time ECG Data Bayesian Optimization Analysis for Rehabilitation Robots (재활 로봇을 위한 심전도(ECG) 실시간 데이터 베이지안 최적화 분석 기술)

  • Choi, Jin-Tak;Kang, Kyung-Tae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.53-56
    • /
    • 2022
  • 본 논문에서는 심전도(ECG) 센서와 에지 컴퓨팅(Edge computing)을 활용하여 실시간 데이터와 Bayesian optimization을 통한 기계학습 알고리즘으로 재활 로봇에서 발목을 제어할 수 있는 Parameter(외골격 관련) 최적값을 출력한다. 심전도 센서 적용을 기반으로 하는 바이오 데이터 기술, 기계 학습(Bayesian optimization) 모델 접근 방식과 하드웨어 결합으로 재활 로봇 모터를 제어할 수 있는 Parameter 제공과 실시간 모터 제어 운영할 수 있도록 분석 플랫폼을 구축한다. 이 플랫폼을 이용해보다 효과적인 이동형 로봇설계 및 처리 방법을 연결할 수 있는 발판을 마련하였고, 로봇제어에 많이 사용하고 있는 매트랩 시뮬링크(Matlab simulink)를 연결할 수 있는 범용 통신 지원한다. 센서-전처리-인공지능 알고리즘-모터 제어 Parameter로 연계되는 데이터 가공과 처리 방법으로 최근 분석 기법을 적용하여 바이오 데이터 연구 활동과 이동형 재활 로봇 관련 데이터 분석 분야를 쉽게 접근할 수 있도록 한다.

  • PDF

Sensor Fault Detection Scheme based on Deep Learning and Support Vector Machine (딥 러닝 및 서포트 벡터 머신기반 센서 고장 검출 기법)

  • Yang, Jae-Wan;Lee, Young-Doo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.185-195
    • /
    • 2018
  • As machines have been automated in the field of industries in recent years, it is a paramount importance to manage and maintain the automation machines. When a fault occurs in sensors attached to the machine, the machine may malfunction and further, a huge damage will be caused in the process line. To prevent the situation, the fault of sensors should be monitored, diagnosed and classified in a proper way. In the paper, we propose a sensor fault detection scheme based on SVM and CNN to detect and classify typical sensor errors such as erratic, drift, hard-over, spike, and stuck faults. Time-domain statistical features are utilized for the learning and testing in the proposed scheme, and the genetic algorithm is utilized to select the subset of optimal features. To classify multiple sensor faults, a multi-layer SVM is utilized, and ensemble technique is used for CNN. As a result, the SVM that utilizes a subset of features selected by the genetic algorithm provides better performance than the SVM that utilizes all the features. However, the performance of CNN is superior to that of the SVM.

Classification of hysteretic loop feature for runoff generation through a unsupervised machine learning algorithm (비지도 기계학습을 통한 유출 발생 내 이력 현상 구분)

  • Lee, Eunhyung;Jeon, Hangtak;Kim, Dahong;Friday, Bassey Bassey;Kim, Sanghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.360-360
    • /
    • 2022
  • 토양수분과 유출 간 관계를 정량화하는 것은 수문 기작 및 유출 발생 과정의 이해를 위한 중요한 정보를 제공한다. 특히, 유출과정의 특성화는 수문 사상에 따른 불포화대 내 토양수 및 토사 손실 제어와 산사태 및 비점오염원 발생 예측을 위해 필수적이다. 유출과정과 관련된 비선형성과 복잡성을 확인하기 위해 토양수분과 유출 사이의 이력 거동이 조사되었다. 특히, 수문 과정 내 이력 현상 구체화를 위해 정성적인 시각적 분류 및 정량적 평가를 위한 이력 지수들이 개발되었다. 정성적인 시각적 분류는 시간에 따라 시계 및 반시계방향으로 다중 루프 형상을 나누는 방식으로 진행되었고, 정량적 평가의 경우 이력 고리(Hysteretic loop) 내 상승 고리(Rising limb)와 하강 고리(Falling limb)의 차이를 기준으로 한 지수로 이력 현상을 특성화하였다. 이전에 제안된 방법론들은 연구자의 판단이 들어가기 때문에 보편적이지 않고 이력 현상을 개발된 지수에 맞춤에 따라 자료 손실이 나타나는 한계가 존재한다. 자료의 손실 없이 불포화대 내 발생 가능한 대표 이력 현상을 자동으로 추출하기 위해 적합한 비지도 학습기반 기계학습 방법론의 제안이 필요하다. 우리 연구에서는 국내 산지 사면에서 강우 사상 동안 다중 깊이(10, 30, 60cm)로 56개의 토양수분 측정지점에서 확보된 토양수분 시계열 자료와 산지 사면 내 위어를 통해 확보된 유출 시계열 자료를 사용하였다. 먼저, 기존에 분류 방법을 기반으로 계절 및 공간특성에 따라 지배적으로 발생하는 토양수분-유출 간 이력 현상을 특성화하였다. 다음으로, 토양수분-유출 간 이력 패턴을 자료 손실 없이 형상화하여 자동으로 데이터베이스화하는 알고리즘을 개발하였다. 마지막으로, 비지도 학습방법을 이용하여 데이터베이스화된 실제 발현 이력 현상 내 확률분포를 최대한 가깝게 추정하는 은닉층을 반복적인 재구성 학습을 통해 구현함으로써 대표 이력 현상 패턴을 추출하였다.

  • PDF

Classifying the severity of pedestrian accidents using ensemble machine learning algorithms: A case study of Daejeon City (앙상블 학습기법을 활용한 보행자 교통사고 심각도 분류: 대전시 사례를 중심으로)

  • Kang, Heungsik;Noh, Myounggyu
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.39-46
    • /
    • 2022
  • As the link between traffic accidents and social and economic losses has been confirmed, there is a growing interest in developing safety policies based on crash data and a need for countermeasures to reduce severe crash outcomes such as severe injuries and fatalities. In this study, we select Daejeon city where the relative proportion of fatal crashes is high, as a case study region and focus on the severity of pedestrian crashes. After a series of data manipulation process, we run machine learning algorithms for the optimal model selection and variable identification. Of nine algorithms applied, AdaBoost and Random Forest (ensemble based ones) outperform others in terms of performance metrics. Based on the results, we identify major influential factors (i.e., the age of pedestrian as 70s or 20s, pedestrian crossing) on pedestrian crashes in Daejeon, and suggest them as measures for reducing severe outcomes.

Fruit price prediction study using artificial intelligence (인공지능을 이용한 과일 가격 예측 모델 연구)

  • Im, Jin-mo;Kim, Weol-Youg;Byoun, Woo-Jin;Shin, Seung-Jung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.197-204
    • /
    • 2018
  • One of the hottest issues in our 21st century is AI. Just as the automation of manual labor has been achieved through the Industrial Revolution in the agricultural society, the intelligence information society has come through the SW Revolution in the information society. With the advent of Google 'Alpha Go', the computer has learned and predicted its own machine learning, and now the time has come for the computer to surpass the human, even to the world of Baduk, in other words, the computer. Machine learning ML (machine learning) is a field of artificial intelligence. Machine learning ML (machine learning) is a field of artificial intelligence, which means that AI technology is developed to allow the computer to learn by itself. The time has come when computers are beyond human beings. Many companies use machine learning, for example, to keep learning images on Facebook, and then telling them who they are. We also used a neural network to build an efficient energy usage model for Google's data center optimization. As another example, Microsoft's real-time interpretation model is a more sophisticated translation model as the language-related input data increases through translation learning. As machine learning has been increasingly used in many fields, we have to jump into the AI industry to move forward in our 21st century society.

지능형 IoT서비스를 위한 기계학습 기반 동작 인식 기술

  • Choe, Dae-Ung;Jo, Hyeon-Jung
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.19-28
    • /
    • 2016
  • 최근 RFID와 같은 무선 센싱 네트워크 기술과 객체 추적을 위한 센싱 디바이스 및 다양한 컴퓨팅 자원들이 빠르게 발전함에 따라, 기존 웹의 형태는 소셜 웹에서 유비쿼터스 컴퓨팅 웹으로 자연스럽게 진화되고 있다. 유비쿼터스 컴퓨팅 웹에서 사물인터넷(IoT)은 기존의 컴퓨터를 대체할 수 있는데, 이것은 곧 한 사람과 주변 사물들 간에 연결되는 네트워크가 확장되는 것과 동시에 네트워크 안에서 생성되는 데이터의 수가 기하급수적으로 증가되는 것을 의미한다. 따라서 보다 지능적인 IoT 서비스를 위해서는, 수많은 미가공 데이터들 사이에서 사람의 의도와 상황을 실시간으로 정확히 파악할 수 있어야 한다. 이때 사물과의 상호작용을 위한 동작 인식 기술(Gesture recognition)은 집적적인 접촉을 필요로 하지 않기 때문에, 미래의 사람-사물 간 상호작용에 응용될 수 있는 잠재력을 갖고 있다. 한편, 기계학습 분야의 최신 알고리즘들은 다양한 문제에서 사람의 인지능력을 종종 뛰어넘는 성능을 보이고 있는데, 그 중에서도 의사결정나무(Decision Tree)를 기반으로 한 Decision Forest는 분류(Classification)와 회귀(Regression)를 포함한 전 영역에 걸쳐 우월한 성능을 보이고 있다. 따라서 본 논문에서는 지능형 IoT 서비스를 위한 다양한 동작 인식 기술들을 알아보고, 동작 인식을 위한 Decision Forest의 기본 개념과 구현을 위한 학습, 테스팅에 대해 구체적으로 소개한다. 특히 대표적으로 사용되는 3가지 학습방법인 배깅(Bagging), 부스팅(Boosting) 그리고 Random Forest에 대해 소개하고, 이것들이 동작 인식을 위해 어떠한 특징을 갖는지 기존의 연구결과를 토대로 알아보았다.

Discretization of Continuous-Valued Attributes for Classification Learning (분류학습을 위한 연속 애트리뷰트의 이산화 방법에 관한 연구)

  • Lee, Chang-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.6
    • /
    • pp.1541-1549
    • /
    • 1997
  • Many classification algorithms require that training examples contain only discrete values. In order to use these algorithms when some attributes have continuous numeric values, the numeric attributes must be converted into discrete ones. This paper describes a new way of discretizing numeric values using information theory. Our method is context-sensitive in the sense that it takes into account the value of the target attribute. The amount of information each interval gives to the target attribute is measured using Hellinger divergence, and the interval boundaries are decided so that each interval contains as equal amount of information as possible. In order to compare our discretization method with some current discretization methods, several popular classification data sets are selected for experiment. We use back propagation algorithm and ID3 as classification tools to compare the accuracy of our discretization method with that of other methods.

  • PDF

A Spam Filtering Method using Frequency Distribution of Special Letter and Frequency Ratio of Keyword (특수 문자 및 단어 빈도 비율을 이용한 스팸 필터링 방법)

  • Lee, Seong-Jin;Baik, Jong-Bum;Han, Chung-Seok;Lee, Soo-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.280-283
    • /
    • 2011
  • 인터넷 환경에서 무차별적으로 유통되는 스팸 문서로 인한 사회적 문제가 커져 가고 있는 가운데 스팸문서를 차단하기 위한 활발한 연구들이 이루어지고 있다. 이 가운데 대표적인 연구는 자질어를 이용한 기계학습 기반의 스팸 차단 기술이다. 그러나 이 방법은 미리 선택된 자질어로만 구성된 분류 모델을 사용하기 때문에 Term Spamming(단어 조작에 의한 스팸 차단 행위)에 취약하며, 스팸 차단의 성능과 학습 소요 시간이 선택된 자질어의 품질과 수에 민감하게 영향을 받는다는 문제점이 있다. 본 논문에서는 이러한 문제를 해결하기 위해 스팸 문서에서 등장하는 특수 문자의 빈도와 반복되는 단어의 특징을 이용한 스팸 탐지 방법을 제안한다. 제안 방법은 각 문서에서 등장하는 특수 문자의 비율과 최다 출현 단어의 반복 패턴을 정의하고 기계학습 알고리즘을 적용하여 스팸 분류 모델을 생성한다. 제안 방법의 성능 평가를 위해 E-mail 데이터와 블로그의 Post 데이터를 사용하여 자질어 기반의 스팸 차단 방법과 비교 실험을 진행하였다. 실험 결과 본 논문에서 제안하는 방법이 분류 정확도와 학습 소요 시간에 있어 우수한 성능을 보이는 것을 확인하였다.