• 제목/요약/키워드: 기계 학습 모델

검색결과 1,152건 처리시간 0.035초

제한된 모션 센서와 애니메이션 데이터를 이용한 캐릭터 동작 제어 (Character Motion Control by Using Limited Sensors and Animation Data)

  • 배태성;이은지;김하은;박민지;최명걸
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제25권3호
    • /
    • pp.85-92
    • /
    • 2019
  • 디지털 스토리텔링에 등장하는 3차원 가상 캐릭터에는 외형뿐만 아니라 자세나 동작에서도 캐릭터의 개성이 반영된 고유의 스타일이 부여된다. 그러나 사용자가 웨어러블 동작센서를 사용하여 직접 캐릭터의 신체 동작을 제어하는 경우 캐릭터 고유의 스타일이 무시될 수 있다. 본 연구에서는 가상 캐릭터를 위해 제작된 소량의 애니메이션 데이터만을 이용하는 검색 기반 캐릭터 동작 제어 기술을 사용하여 캐릭터 고유의 스타일을 유지하는 기술을 제시한다. 대량의 학습 데이터를 필요로하는 기계학습법을 피하는 대신 소량의 애니메이션 데이터로부터 사용자의 자세와 유사한 캐릭터 자세를 직접 검색하여 사용하는 기술을 제안한다. 제시된 방법을 검증하기 위해 전문가에 의해 제작된 가상현실 게임용 캐릭터 모델과 애니메이션 데이터를 사용하여 실험하였다. 평범한 사람의 모션캡쳐 데이터를 사용했을 때와의 결과를 비교하여 캐릭터 스타일이 보존됨을 증명하였다. 또한 동작센서의 개수를 달리한 실험을 통해 제시된 방법의 확장성을 증명하였다.

순환신경망을 이용한 자기장 기반 실내측위시스템 (Indoor Positioning System using Geomagnetic Field with Recurrent Neural Network Model)

  • 배한준;최린;박병준
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제14권6호
    • /
    • pp.57-65
    • /
    • 2018
  • BLE 또는 Wi-Fi 기반 지문인식과 같은 기존의 RF 신호 기반 실내 위치인식 기술은 RF 신호의 불안정한 수신 신호 세기로 인해 소규모 실내 환경에서도 작지 않은 오차를 발생시키며 공항, 백화점과 같은 대규모 실내 환경에 적용하기가 어렵다. 이 논문에서는 RF 신호보다 안정적인 신호 강도를 갖는 자기장 신호를 이용한 실내측위 시스템을 제안한다. 유사한 자기장 값이 같은 실내 공간에 여럿 존재하지만, 사용자의 이동이 계속됨에 따라 자기장 신호는 고유 시퀀스를 가지게 된다. 본 논문에서는 시간에 따라 변화하는 센서 데이터 시퀀스를 인식하는 데 효과적인 순환 신경망 (Recurrent neural network, RNN)이라 불리는 심층 신경망 모델을 사용하여 사용자의 현재 위치와 이동 경로를 추적한다. 제안된 신경망 기반의 지자기 실내측위시스템의 평가를 위해 약 $94m{\times}26$ 크기의 교내 테스트베드에서 자기장 맵을 구축하고 자기장맵으로부터 추출한 다양한 이동 경로와 위치 정보를 이용하여 RNN을 학습한 결과, 테스트베드에서 제안된 시스템은 평균 1.20 미터의 테스트 측위 오차를 달성할 수 있었다.

머신러닝을 활용한 자동차 시트용 폴리우레탄 발포공정의 불량 예측 모델 개발 (A Development of Defeat Prediction Model Using Machine Learning in Polyurethane Foaming Process for Automotive Seat)

  • 최낙훈;오종석;안종록;김기선
    • 한국산학기술학회논문지
    • /
    • 제22권6호
    • /
    • pp.36-42
    • /
    • 2021
  • 최근 4차 산업혁명으로 인해 제조업계에서는 제조업의 인공지능을 접목시켜 효율성을 극대화하는 스마트 팩토리 붐이 일어나고 있다. 특히 자동차 부품 제조 및 생산에 널리 적용되어 불량을 낮추는 연구들이 활발히 진행되고 있다. 이에 본 연구에서는 머신러닝을 통한 불량예측을 시트 폼 발포공정에 접목시켜 발포공정의 효율성을 극대화하는 연구를 진행하였다. 자동차 시트폼 에서 주로 사용되는 폴리우레탄 폼(polyurethane foam)은 폴리올(polyol, 이하 POL)과 이소시아네이트(isocyanate, 이하 ISO)를 혼합 및 발포하는 공정으로 제조되며, 각 원료의 혼합비율과 온도의 변화에 따라 제품의 특성이 변화한다. 이에 본 연구에서는 발포공정에서 수집되는 인자별 데이터값을 머신러닝에 적용하여 불량을 예측하고자 한다. 머신러닝에 사용되는 알고리즘으로는 의사결정트리, kNN, 앙상블 알고리즘을 사용하였으며 학습은 5,147개의 데이터를 사용하였으며, 학습된 결과를 1,000개의 검증용 데이터에 적용한 결과, 세 알고리즘 중 앙상블 알고리즘에서 최대 98.5 %의 정확도를 확인할 수 있었다. 이러한 결과를 통해 발포공정에서 실시간으로 수집되는 데이터를 통해 현재 생산되는 부품의 불량 여부를 확인할 수 있으며, 나아가 각 인자를 조절하여 불량률을 개선할 수 있음을 짐작할 수 있다고 사료된다.

추천 시스템의 성능 안정성을 위한 예측적 군집화 기반 협업 필터링 기법 (Predictive Clustering-based Collaborative Filtering Technique for Performance-Stability of Recommendation System)

  • 이오준;유은순
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.119-142
    • /
    • 2015
  • 사용자의 취향과 선호도를 고려하여 정보를 제공하는 추천 시스템의 중요성이 높아졌다. 이를 위해 다양한 기법들이 제안되었는데, 비교적 도메인의 제약이 적은 협업 필터링이 널리 사용되고 있다. 협업 필터링의 한 종류인 모델 기반 협업 필터링은 기계학습이나 데이터 마이닝 모델을 협업 필터링에 접목한 방법이다. 이는 희박성 문제와 확장성 문제 등의 협업 필터링의 근본적인 한계를 개선하지만, 모델 생성 비용이 높고 성능/확장성 트레이드오프가 발생한다는 한계점을 갖는다. 성능/확장성 트레이드오프는 희박성 문제의 일종인 적용범위 감소 문제를 발생시킨다. 또한, 높은 모델 생성 비용은 도메인 환경 변화의 누적으로 인한 성능 불안정의 원인이 된다. 본 연구에서는 이 문제를 해결하기 위해, 군집화 기반 협업 필터링에 마르코프 전이확률모델과 퍼지 군집화의 개념을 접목하여, 적용범위 감소 문제와 성능 불안정성 문제를 해결한 예측적 군집화 기반 협업 필터링 기법을 제안한다. 이 기법은 첫째, 사용자 기호(Preference)의 변화를 추적하여 정적인 모델과 동적인 사용자간의 괴리 해소를 통해 성능 불안정 문제를 개선한다. 둘째, 전이확률과 군집 소속 확률에 기반한 적용범위 확장으로 적용범위 감소 문제를 개선한다. 제안하는 기법의 검증은 각각 성능 불안정성 문제와 확장성/성능 트레이드오프 문제에 대한 강건성(robustness)시험을 통해 이뤄졌다. 제안하는 기법은 기존 기법들에 비해 성능의 향상 폭은 미미하다. 또한 데이터의 변동 정도를 나타내는 지표인 표준 편차의 측면에서도 의미 있는 개선을 보이지 못하였다. 하지만, 성능의 변동 폭을 나타내는 범위의 측면에서는 기존 기법들에 비해 개선을 보였다. 첫 번째 실험에서는 모델 생성 전후의 성능 변동폭에서 51.31%의 개선을, 두 번째 실험에서는 군집 수 변화에 따른 성능 변동폭에서 36.05%의 개선을 보였다. 이는 제안하는 기법이 성능의 향상을 보여주지는 못하지만, 성능 안정성의 측면에서는 기존의 기법들을 개선하고 있음을 의미한다.

심층신경망과 천리안위성 2A호를 활용한 지상기온 추정에 관한 연구 (Estimation for Ground Air Temperature Using GEO-KOMPSAT-2A and Deep Neural Network)

  • 엄태윤;김광년;조용한;송근용;이윤정;이윤곤
    • 대한원격탐사학회지
    • /
    • 제39권2호
    • /
    • pp.207-221
    • /
    • 2023
  • 본 연구는 천리안위성 2A호의 Level 1B (L1B) 정보를 사용해 지상기온을 추정하기 위한 심층신경망(deep neural network, DNN) 기법을 적용하고 검증을 실시하였다. 지상기온은 지면으로부터 1.5 m 높이의 대기온도로 일상생활뿐만 아니라 폭염이나 한파와 같은 이슈에 밀접한 관련을 갖는다. 지상기온은 지표면 온도와 대기의 열 교환에 의해 결정되므로 위성으로부터 산출된 지표면 온도(land surface temperature, LST)를 이용한 지상기온 추정 연구가 활발하였다. 하지만 천리안위성 2A호 산출물 LST는 Level 2 정보로 구름영향이 없는 픽셀만 산출되는 한계가 있다. 따라서 본 연구에서는 Advanced Meteorological Imager 센서에서 측정된 원시데이터에 오직 복사와 위치보정을 마친 L1B 정보를 사용해 지상기온을 추정하기 위한 DNN 모델을 제시하고 그 성능을 가늠하기 위해 위성 LST와 지상관측 기온 사이의 선형회귀모델을 기준모델로 사용하였다. 연구기간은 2020년부터 2022년까지 3년으로 평가기간 2022년을 제외한 기간은 훈련기간으로 설정했다. 평가지표는 기상청의 종관기상관측소에서 정시에 관측된 기온정보로 평균 제곱근 오차를 사용하였다. 관측지점에서 추출된 픽셀 중 손실된 픽셀의 비율은 LST는 57.91%, L1B는 1.63%를 보였으며 LST의 비율이 낮은 이유는 구름의 영향 때문이다. 제안한 DNN의 구조는 16개 L1B 자료와 태양정보를 입력 받는 층과 은닉층 4개, 지상기온 1개를 출력하는 층으로 구성하였다. 연구결과 구름의 영향이 없는 경우 DNN 모델이 root mean square error (RMSE) 2.22℃로 기준모델의 RMSE 3.55℃ 보다 낮은 오차를 보였고, 흐린 조건을 포함한 총 RMSE는 3.34℃를 나타내면서 구름의 영향을 제거할 수 있을 것으로 보였다. 하지만 계절과 시간에 따른 분석결과 여름과 겨울철에 모델의 결정계수가 각각 0.51과 0.42로 매우 낮게 나타났고 일 변동의 분산이 0.11과 0.21로 나타났다. 가시채널을 고려해 태양 위치정보를 추가한 결과에서 결정계수가 0.67과 0.61로 개선되었고 시간에 따른 일 변동의 분산도 0.03과 0.1로 감소하면서 모든 계절과 시간대에 더 일반화된 모델을 생성할 수 있었다.

3D 프린팅 소재 화학물질의 독성 예측을 위한 Data-centric XAI 기반 분자 구조 Data Imputation과 QSAR 모델 개발 (Data-centric XAI-driven Data Imputation of Molecular Structure and QSAR Model for Toxicity Prediction of 3D Printing Chemicals)

  • 정찬혁;김상윤;허성구;;신민혁;유창규
    • Korean Chemical Engineering Research
    • /
    • 제61권4호
    • /
    • pp.523-541
    • /
    • 2023
  • 3D 프린터의 활용이 높아짐에 따라 발생하는 화학물질에 대한 노출 빈도가 증가하고 있다. 그러나 3D 프린팅 발생 화학물질의 독성 및 유해성에 대한 연구는 미비하며, 분자 구조 데이터의 결측치로 인해 in silico 기법을 사용한 독성예측 연구는 저조한 실정이다. 본 연구에서는 화학물질의 분자구조 정보를 나타내는 주요 분자표현자의 결측치를 보간하여 3D 프린팅의 독성 및 유해성을 예측한 Data-centric QSAR 모델을 개발하였다. 먼저 MissForest 알고리즘을 사용해 3D 프린팅으로 발생되는 유해물질의 분자표현자 결측치를 보완하였으며, 서로 다른 4가지 기계학습 모델(결정트리, 랜덤포레스트, XGBoost, SVM)을 기반으로 Data-centric QSAR 모델을 개발하여 생물 농축 계수(Log BCF)와 옥탄올-공기분배계수(Log Koa), 분배계수(Log P)를 예측하였다. 또한, 설명 가능한 인공지능(XAI) 방법론 중 TreeSHAP (SHapley Additive exPlanations) 기법을 활용하여 Data-centric QSAR 모델의 신뢰성을 입증하였다. MissForest 알고리즘 기반 결측지 보간 기법은, 기존 분자구조 데이터에 비하여 약 2.5배 많은 분자구조 데이터를 확보할 수 있었다. 이를 바탕으로 개발된 Data-centric QSAR 모델의 성능은 Log BCF, Log Koa와 Log P를 각각 73%, 76%, 92% 의 예측 성능으로 예측할 수 있었다. 마지막으로 Tree-SHAP 분석결과 개발된 Data-centric QSAR 모델은 각 독성치와 물리적으로 상관성이 높은 분자표현자를 통하여 선택함을 설명할 수 있었고 독성 정보에 대한 높은 예측 성능을 확보할 수 있었다. 본 연구에서 개발한 방법론은 다른 프린팅 소재나 화학공정, 그리고 반도체/디스플레이 공정에서 발생 가능한 오염물질의 독성 및 인체 위해성 평가에 활용될 수 있을 것으로 사료된다.

제목을스마트 시설환경 실시간 제어를 위한 마이크로 병렬 컴퓨팅 기술 분석 (A Benchmark of Micro Parallel Computing Technology for Real-time Control in Smart Farm (MPICH vs OpenMP))

  • 민재기;이동훈
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.161-161
    • /
    • 2017
  • 스마트 시설환경의 제어 요소는 난방기, 창 개폐, 수분/양액 밸브 개폐, 환풍기, 제습기 등 직접적으로 시설환경의 조절에 관여하는 인자와 정보 교환을 위한 통신, 사용자 인터페이스 등 간접적으로 제어에 관련된 요소들이 복합적으로 존재한다. PID 제어와 같이 하는 수학적 논리를 바탕으로 한 제어와 전문 관리자의 지식을 기반으로 한 비선형 학습 모델에 의한 제어 등이 공존할 수 있다. 이러한 다양한 요소들을 복합적으로 연동시키기 위해선 기존의 시퀀스 기반 제어 방식에는 한계가 있을 수 있다. 관행의 방식과 같이 시계열 상에서 획득한 충분한 데이터를 이용하여 제어의 양과 시점을 결정하는 방식은 예외 상황에 충분히 대처하기 어려운 단점이 있을 수 있다. 이러한 예외 상황은 자연적인 조건의 변화에 따라 불가피하게 발생하는 경우와 시스템의 오류에 기인하는 경우로 나뉠 수 있다. 본 연구에서는 실시간으로 변하는 시설환경 내의 다양한 환경요소를 실시간으로 분석하고 상응하는 제어를 수행하여 수학적이며 예측 가능한 논리에 의해 준비된 제어시스템을 보완할 방법을 연구하였다. 과거의 고성능 컴퓨팅(HPC; High Performance Computing)은 다수의 컴퓨터를 고속 네트워크로 연동하여 집적적으로 연산능력을 향상시킨 기술로 비용과 규모의 측면에서 많은 투자를 필요로 하는 첨단 고급 기술이었다. 핸드폰과 모바일 장비의 발달로 인해 소형 마이크로프로세서가 발달하여 근래 2 Ghz의 클럭 속도에 이르는 어플리케이션 프로세서(AP: Application Processor)가 등장하기도 하였다. 상대적으로 낮은 성능에도 불구하고 저전력 소모와 플랫폼의 소형화를 장점으로 한 AP를 시설환경의 실시간 제어에 응용하기 위한 방안을 연구하였다. CPU의 클럭, 메모리의 양, 코어의 수량을 다음과 같이 달리한 3가지 시스템을 비교하여 AP를 이용한 마이크로 클러스터링 기술의 성능을 비교하였다.1) 1.5 Ghz, 8 Processors, 32 Cores, 1GByte/Processor, 32Bit Linux(ARMv71). 2) 2.0 Ghz, 4 Processors, 32 Cores, 2GByte/Processor, 32Bit Linux(ARMv71). 3) 1.5 Ghz, 8 Processors, 32 Cores, 2GByte/Processor, 64Bit Linux(Arch64). 병렬 컴퓨팅을 위한 개발 라이브러리로 MPICH(www.mpich.org)와 Open-MP(www.openmp.org)를 이용하였다. 2,500,000,000에 이르는 정수 중 소수를 구하는 연산에 소요된 시간은 1)17초, 2)13초, 3)3초 이었으며, $12800{\times}12800$ 크기의 행렬에 대한 2차원 FFT 연산 소요시간은 각각 1)10초, 2)8초, 3)2초 이었다. 3번 경우는 클럭속도가 3Gh에 이르는 상용 데스크탑의 연산 속도보다 빠르다고 평가할 수 있다. 라이브러리의 따른 결과는 근사적으로 동일하였다. 선행 연구에서 획득한 3차원 계측 데이터를 1초 단위로 3차원 선형 보간법을 수행한 경우 코어의 수를 4개 이하로 한 경우 근소한 차이로 동일한 결과를 보였으나, 코어의 수를 8개 이상으로 한 경우 앞선 결과와 유사한 경향을 보였다. 현장 보급 가능성, 구축비용 및 전력 소모 등을 종합적으로 고려한 AP 활용 마이크로 클러스터링 기술을 지속적으로 연구할 것이다.

  • PDF

Random Forest 기법을 이용한 도심지 MT 시계열 자료의 차량 잡음 분류 (Classification of Transport Vehicle Noise Events in Magnetotelluric Time Series Data in an Urban area Using Random Forest Techniques)

  • 권형석;류경호;심익현;이춘기;오석훈
    • 지구물리와물리탐사
    • /
    • 제23권4호
    • /
    • pp.230-242
    • /
    • 2020
  • 201 6년 9월에 발생한 경주지진원 구역에 대한 정밀 지질구조 규명을 위해 MT 탐사를 적용하였다. 경주지역의 MT 측정자료는 조사지역 인근의 지하철, 전력선, 공장, 주택, 농경지에서 발생된 전기적 잡음과 철도, 도로에서의 차량잡음 등으로 인해 측정자료 왜곡이 심하게 발생되었다. 이 연구에서는 고속철도 및 고속도로와 인접한 4개소의 MT 탐사자료에 기계학습 기법을 적용하여 차량잡음이 포함된 시계열을 분류하였다. 고속열차 잡음이 포함된 시계열에 대해서는 확률적 경사 하강법, 서포트 벡터 머신과 랜덤 포레스트 3가지의 분류모델을 적용하여 그 결과를 비교하였다. 대형트럭 잡음이 포함된 시계열 자료에 대해서는 Hx 성분, Hy 성분과 Hx & Hy 합성성분 크기에 대한 3가지의 샘플 자료를 준비하였으며 랜덤 포레스트 분류모델을 구성하여 그 성능을 평가하였다. 마지막으로 차량잡음 제거 효과 분석을 위하여 차량잡음 제거 전후의 시계열, 진폭 스펙트럼과 겉보기비저항 곡선을 비교하였으며, 이를 통해 차량잡음이 영향을 미치는 주파수 대역과 차량잡음 제거 시 발생될 수 있는 문제점에 대해 고찰하였다.

전통문화 이미지를 위한 세부 자질 주목형 이미지 자동 분석기 (Detail Focused Image Classifier Model for Traditional Images)

  • 김규경;허윤아;김경민;유원희;임희석
    • 한국융합학회논문지
    • /
    • 제8권12호
    • /
    • pp.85-92
    • /
    • 2017
  • 이 논문에서는 최근 전통문화의 늘어나는 콘텐츠와 대조적으로 전통문화에 대한 접근성이 떨어지는 점에 주목하여 이러한 콘텐츠의 접근성의 향상을 위해 지속된 관리와 연구를 위하여 전통문화 이미지를 위한 이미지 자동 분석기를 소개한다. 이 논문에서 소개하는 이미지 자동 분석기는 인공신경망을 기반으로 입력 이미지의 자질들을 벡터스페이스로 변환하여 이를 RNN 기반의 모델을 통하여 세부 자질들을 파악하여 전통문화 이미지의 분류를 행한다. 이러한 방법을 통하여 전체적으로 비슷하게 보이는 전통문화 이미지들의 분류를 가능케 한다. 해당 모델의 훈련을 위하여 한민족정보문화마당 기반의 형식을 토대로 넓은 폭의 이미지 데이터를 수집 및 정리하여 차후 전통문화 이미지 관련 분야에서 사용할 수 있는 데이터셋의 구축에 기여를 하였다. 또한 이러한 연구가 최종적으로 전통문화와 관련된 수요, 공급 및 연구가 한층 더 활발해지는 것에 기여를 한다.

노인 운전자의 공격적인 운전 상태 검출 기법 (A Method of Detecting the Aggressive Driving of Elderly Driver)

  • 고동우;강행봉
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권11호
    • /
    • pp.537-542
    • /
    • 2017
  • 공격적인 성향의 운전은 자동차 사고의 주요한 원인이 된다. 기존 연구에서는 공격적 성향의 운전을 검출하기 위해, 주로 청년을 대상으로 연구가 이뤄졌으며 기계학습의 순수한 Clustering 또는 Classification 기법을 통해 이뤄졌다. 그러나 노인들은 취약한 신체적 조건에 의해 젊은 운전자와는 다른 운전 강도를 가지고 있어 기존의 방식으로는 검출이 불가능 하며, 데이터를 보정하는 등의 새로운 방법이 필요하다. 그리하여, 본 연구에서는 기존의 클러스터링 기법(K-means, Expectation - maximization algorithm)에, 새롭게 제안하는 ECA(Enhanced Clustering method for Acceleration data)기법을 추가하여, 주행 차량에 위치한 스마트폰으로부터 수집된 가속도 데이터를 분석하고 공격적인 운전 형태를 검출해 낸다. ECA는 모든 피험자의 데이터에서 K-means와 EM을 통해 검출된 군집군의 데이터 중 높은 강도의 데이터를 선별하여, 특징을 스케일링한 값을 통해 모델링한다. 본 방식을 통해 기존의 연구의 순수한 클러스터링 방식과는 달리, 모든 청장년 및 노인 실험 참가자 개인들의 공격적인 운전 데이터가 검출되었으며, 클러스터링 기법간의 비교를 통해 K-means 기법이 보다 높은 검출 효율을 갖고 있음을 확인했다. 또한, K-means 방식을 검출한 공격적인 운전 데이터에서는 젊은 운전자가 노인운전자에 비해 1.29배의 높은 운전 강도를 가지고 있음을 발견했다. 이와 같이 본 연구에서 제안된 방식은 낮은 운전 강도를 갖고 있는 노인의 데이터에서 공격적인 운전을 검출 가능하게 되었으며, 특히. 제안된 방법은 노인 운전자를 위한 맞춤형 안전운전 시스템을 구축이 가능하며, 추후 다양한 연구을 통해 이상 운전 상태를 검출하고 조기 경보하는데 활용이 가능할 것이다.