• 제목/요약/키워드: 기계 학습 모델

검색결과 1,152건 처리시간 0.027초

다중목적함수 최적화에 기초한 광대역 유도분극 변수 예측 적용성 분석 (Applicability Analysis on Estimation of Spectral Induced Polarization Parameters Based on Multi-objective Optimization)

  • 김빛나래;정주연;민배현;남명진
    • 지구물리와물리탐사
    • /
    • 제25권3호
    • /
    • pp.99-108
    • /
    • 2022
  • 유도분극(induced polarization; IP) 탐사 중 광대역 혹은 빛띠(spectral) IP (SIP) 탐사법에서는 교류 전류를 송신원으로 하였을 때 나타나는 매질의 진동수에 따른 복소전기비저항의 크기와 위상을 측정하며, 진동수에 따라 값이 변화하는 복소전기비저항의 분산 혹은 이완 반응을 분석하게 된다. 이때 분산곡선은 등가회로 모델과 같은 이완 모델을 통해 설명할 수 있는데, 다중목적함수 최적화 기법을 적용하여 분산곡선에서 SIP 이완모델의 변수들을 예측해보았다. SIP 이완현상을 설명하기 위해 가장 많이 이용되는 Cole-Cole 모델 계열의 변수를 구하기 위해 크기 오차와 위상 오차를 최소화하는 두 가지 목적함수로 설정하고 다중목적함수를 최적화하기 위해 유전 알고리듬을 이용하였다. 다중목적함수 최적화 기법을 이용한 Cole-Cole 모델 변수 구하기는 수치 모델에 대해서는 잘 구해졌으나 기존에 보고된 SIP 실내실험 자료에 피팅할 경우, 주로 위상 크기가 작을 때(약 10 mrad 이하) 피팅이 맞지 않는 경우가 많았다. 이는 다중목적함수로 사용하는 크기와 위상의 자료 오차 사이에 스케일이 맞지 않아 발생하는 한계로 추정되며, 향후 복소전기비저항의 분산 곡선에서 SIP 변수를 예측하기 위해 이러한 한계를 극복할 수 있는 기계 학습 등 다양한 기법들에 대한 연구가 필요할 것으로 판단된다.

열펌프의 고장감지 및 진단시스템 구축을 위한 실시간 정상상태 진단기법 개발 (Technology for Real-Time Identification of Steady State of Heat-Pump System to Develop Fault Detection and Diagnosis System)

  • 김민성;윤석호;김민수
    • 대한기계학회논문집B
    • /
    • 제34권4호
    • /
    • pp.333-339
    • /
    • 2010
  • 고장감지 및 진단(FDD) 시스템의 구축의 기초 연구로 정상상태 진단기에 대한 연구를 수행하였다. 정상상태에 대한 진단은 시스템 전체를 관찰하거나 몇몇 필요한 시스템 파라미터를 모니터링 함으로써 가능하다. 최적화된 정상상태 진단기를 이용하면 FDD 시스템에서 필수적인 정상운전 시의 기준모델(no fault reference model)을 자가학습을 통하여 적용할 수 있다. 본 연구에서는 가정용 열펌프가 냉방조건으로 작동할 경우에 대해 이동창을 기반으로 7개의 측정값들에 대한 표준편차를 분석함으로써 정상상태 판정을 내리도록 하였다. 정상상태 진단기의 작동의 여부는 실내부하를 조절함으로써 확인하였다. 본 연구를 통하여 열펌프 등의 증기압축 사이클 시스템에 대하여 이동창을 기반으로 한 정상상태 진단기 개발 방법을 제시하였다.

FCA 개념 망 기반 개인정보관리 (Personal Information Management Based on the Concept Lattice of Formal Concept Analysis)

  • 김미혜
    • 인터넷정보학회논문지
    • /
    • 제6권6호
    • /
    • pp.163-178
    • /
    • 2005
  • 개인정보관리 시스템의 궁극적인 목표는 개인이 필요로 하는 정보를 수집하고 처리하여 보다 간편하고 효율적인 방법으로 정보를 검색할 수 있도록 조직화하여 관리하는데 있다. 그러나 기존의 개인정보관리 시스템은 자료 저장을 위해 전통적인 계층적 디렉터리 모델을 사용하고 있기 때문에 효율적인 정보관리 및 검색에 한계가 있으며 정보의 연관 관계에 의한 검색이 어렵다는 문제점을 가진다. 이러한 문제점들을 개선하기 위해 본 논문에서는 개인이 필요로 하는 문서를 웹상에서 쉽게 관리하고 유지할 수 있는 더불어 관리된 문서를 쉽게 검색할 수 있는 개인정보관리 메커니즘을 기계학습의 한 기법이 Fornal Concept Analysis의 개념망 모델을 이용하여 제안한다. 실험 결과는 제안된 방법이 계층적인 트리 구조의 단점을 극복하고 제한된 검색을 넘어 개념들 사이의 연관 관계에 의한 검색을 지원할 뿐만 아니라 검색 성능에 있어 계층적인 구조를 기반으로 하는 시스템보다 더 유용한 방법임을 보였다.

  • PDF

격틀 사전과 하위 범주 정보를 이용한 한국어 의미역 결정 (Korean Semantic Role Labeling Using Case Frame Dictionary and Subcategorization)

  • 김완수;옥철영
    • 정보과학회 논문지
    • /
    • 제43권12호
    • /
    • pp.1376-1384
    • /
    • 2016
  • 기계가 사람과 같이 문장을 처리하게 하려면 사람이 쓴 문장을 토대로 사람이 문장을 통해 발현하는 모든 문장의 표현 양상을 학습해 사람처럼 분석하고 처리할 수 있어야 한다. 이를 위해 기본적으로 처리되어야 할 부분은 언어학적인 정보처리이다. 언어학에서 통사론적으로 문장을 분석할 때 필요한 것이 문장을 성분별로 나눌 수 있고, 문장의 핵심인 용언을 중심으로 필수 논항을 찾아 해당 논항이 용언과 어떤 의미역 관계를 맺고 있는지를 파악할 수 있어야 한다. 본 연구에서는 국립국어원 표준국어대사전을 기반으로 구축한 격틀사전과 한국어 어휘 의미망에서 용언의 하위 범주를 자질로 구축한 CRF 모델을 적용하여 의미역을 결정하는 방법을 사용하였다. 문장의 어절, 용언, 격틀사전, 단어의 상위어 정보를 자질로 구축한 CRF 모델을 기반으로 하여 의미역을 자동으로 태깅하는 실험을 한 결과 정확률이 83.13%로 기존의 규칙 기반 방법을 사용한 의미역 태깅 결과의 정확률 81.2%보다 높은 성능을 보였다.

항적모델 추출을 통한 해상교통관제사 의사결정 지원 방안 (Decision Making Support System for VTSO using Extracted Ships' Tracks)

  • 김주성;정중식;정재용;김윤하;최익환;김진한
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2015년도 춘계학술대회
    • /
    • pp.310-311
    • /
    • 2015
  • 선박 항적 데이터는 해상교통관제센터에 의해 실시간으로 모니터링 되고 수집되어 진다. 이러한 데이터를 기반으로 선박의 항적 패턴분석과 항적 모델을 추출하여 해상교통관제사의 의사결정에 기여하고자 한다. 항적 데이터의 처리와 가공, 항적 모델링을 위하여 SVM알고리즘이 사용되었으며, 적정 파라미터 선정을 위하여 k-fold cross validation이 사용되었다. 제안된 항적 데이터 모델링을 통하여 이상거동 선박의 사전 판별, 선박의 추측위치 계산 등에 응용하여 해상교통과제사의 의사결정을 지원하고자 한다.

  • PDF

MOnCa2: 지능형 스마트폰 어플리케이션을 위한 사용자 이동 행위 인지와 경로 예측 기반의 고수준 콘텍스트 추론 프레임워크 (MOnCa2: High-Level Context Reasoning Framework based on User Travel Behavior Recognition and Route Prediction for Intelligent Smartphone Applications)

  • 김제민;박영택
    • 정보과학회 논문지
    • /
    • 제42권3호
    • /
    • pp.295-306
    • /
    • 2015
  • MOnCa2는 스마트폰에 장착된 센서와 온톨로지 추론 기반의 지능형 스마트폰 어플리케이션 구축을 위한 프레임워크다. 기존에 연구되었던 MOnCa는 온톨로지 인스턴스로 등록된 센서 값에 대한 정보를 바탕으로 사용자의 현재 상황을 판단 및 추론하였다. 이러한 방식은 사용자의 공간 정보나 주변에 존재하는 객체가 무엇인지 판단하는 것은 가능하나 사용자의 물리적인 콘텍스트(이동 행위, 이동할 목적지 등등) 판단하는 것은 불가능했다. 본 논문에서 설명하는 MOnCa2는 사용자 개개인의 물리적인 콘텍스트를 판단 및 추론하기 위해 스마트폰의 장착된 센서를 바탕으로 행위 및 이동 상황에 대응하는 인지 모델을 구축하고, 구축된 모델을 기반으로 사용자의 실시간 행위 및 이동 상황에 대해 1차적인 추론을 수행하며, 추론된 1차적인 콘텍스트에 대해 온톨로지 기반의 2차 추론을 통해 지능형 어플리케이션에 필요한 고수준 사용자 콘텍스트를 생산한다. 따라서 본 논문은 스마트폰의 가속도 센서를 기반으로 사용자의 이동에 필요한 행위를 인지하는 기법, 스마트폰의 GPS 신호를 바탕으로 이동 목적지와 경로를 예측하는 기법, 온톨로지 실체화를 적용하여 고수준 콘텍스트를 추론하는 과정에 초점을 맞추어 설명을 한다.

진화연산 기반 계층적 하이퍼네트워크 모델에 의한 암 특이적 microRNA-mRNA 상호작용 탐색 (Exploring Cancer-Specific microRNA-mRNA Interactions by Evolutionary Layered Hypernetwork Models)

  • 김수진;하정우;장병탁
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권10호
    • /
    • pp.980-984
    • /
    • 2010
  • microRNA (miRNA)와 mRNA 조절 상호작용 탐색은 다양한 생물학적 현상에 있어 새로운 시야를 제공해 줄 수 있다. 최근 생물학적 프로세스에서 miRNA는 유전자 발현을 제어하고 세포를 기능적으로 조절하는 중요한 역할을 하는 요소로 밝혀졌다. 이에 복잡한 생물학 시스템에서 miRNA의 기능적 활동을 이해하기 위해서는 miRNA와 mRNA간 상호작용 분석은 필수적이다. 그러나 아직까지 복잡한 miRNA와 mRNA간 상호작용 관계를 추론하는 것은 어려운 문제이기 때문에 많은 연구자들이 실험적, 전산학적 접근 방법을 제안하며 활발한 연구를 진행하고 있다. 본 논문에서는 이종의 발현 데이터로부터 기능적으로 상호작용하는 miRNA-mRNA 조합을 탐색하기 위한 진화 연산 기반의 새로운 하이퍼네트워크 모델을 제안한다. 이에 실험결과로 제안하는 방법을 인간 암 관련 miRNA와 mRNA 발현 데이터에 적용하여 암 특이적 miRNA-mRNA 상호작용 집합을 탐색하고 발견한 miRNA-mRNA 상호작용 관계가 생물학적으로 유의함을 제시한다.

온라인 뉴스에 대한 한국 대중의 감정 예측 (Inference of Korean Public Sentiment from Online News)

  • ;최순영;임희석
    • 한국융합학회논문지
    • /
    • 제9권7호
    • /
    • pp.25-31
    • /
    • 2018
  • 온라인 뉴스는 기존의 신문을 대체하였고, 우리가 정보에 접근하고 공유하는 방법에 큰 변화를 가져왔다. 뉴스 웹사이트들은 사용자가 댓글을 남길 수 있는 기능을 오랜 시간동안 제공하였고, 그 중 몇몇 뉴스 웹사이트에서는 뉴스 기사들에 대한 사용자의 반응들을 크라우드소싱(crowdsource)하기 시작했다. 감정분석 분야에서는 텍스트에 반영된 감정과 반응들을 컴퓨팅적으로 모델링하기 위한 시도를 하고 있다. 본 연구에서는 뉴스 기사에 대한 반응들이 뉴스 본문과 수학적인 상관관계를 갖는지 밝히기 위해, 사용자로부터 생성된 다섯 가지의 감정 라벨(label)을 사용하여 10가지 카테고리(category)에 해당하는 100,000개 이상의 뉴스 기사들을 분석한다. 본 연구에서는 전처리과정이 최소한으로 필요하고 기계학습이 적용하지 않아도 되는 간단한 감정 분석 알고리즘(algorithm)을 제안한다. 우리는 이 모델이 한국어와 같은 형태론적으로 복잡한 언어에도 효과적이라는 것을 증명한다.

은닉 마르코프 모델을 이용한 동영상 기반 낙상 인식 알고리듬 (Video Based Fall Detection Algorithm Using Hidden Markov Model)

  • 김남호;유윤섭
    • 전자공학회논문지
    • /
    • 제50권8호
    • /
    • pp.232-237
    • /
    • 2013
  • 동영상에서 추출한 변수값을 은닉 마르코프 모델(Hidden Markov Model; HMM)에 적용한 새로운 낙상 인식 알고리듬을 제안한다. 개인간 낙상 양식의 차이나 유사 낙상을 실제 낙상과 구분하기 위한 기계 학습 방법으로 HMM알고리듬을 사용하였다. 비디오의 낙상 특징 변수를 얻기 위해 동영상의 광류를 구한 후 이를 주성분 분석 방식에 적용하여 움직임을 정량화하였다. 주성분 분석으로 얻어진 전체 움직임 벡터의 각도, 장단축의 비, 속도등의 조합으로 새로운 여러 종류의 낙상 특징 변수를 정의한 후 이를 HMM에 적용하여 결과를 비교, 분석하였다. 이들 변수들 중에 각도에 의해 얻어진 변수가 가장 좋은 결과를 보여 본 실험에서 91.5%의 민감도(성공 감지율)와 88.01% 의 특이도(실패 감지율)를 나타내었다.

지능형 IoT 미러 시스템을 활용한 인터랙티브 콘텐츠 서비스 구현 (Development of Interactive Content Services through an Intelligent IoT Mirror System)

  • 정원석;서정욱
    • 한국항행학회논문지
    • /
    • 제22권5호
    • /
    • pp.472-477
    • /
    • 2018
  • 본 논문에서는 지능형 IoT (internet of things) 미러 시스템을 통해 사용자의 우울증 예방을 위한 인터랙티브 콘텐츠 서비스를 구현한다. 인터랙티브 콘텐츠 서비스를 위해 IoT 미러 장치는 뇌파 헤드셋 디바이스로부터 집중도 및 명상도 데이터를 측정하고, 웹캠을 통해 다층 퍼셉트론 알고리즘으로 분류된 "슬픔", "분노", "혐오감", "중립", "행복" 및 "놀람"과 같은 표정 데이터를 측정한 후, oneM2M 표준을 준용한 IoT 서버로 전송한다. IoT 서버에 수집된 데이터는 제안한 병합 레이블링 과정을 거쳐 세 가지의 우울 단계(RED, YELLOW, GREEN)를 분류하는 기계학습 모델을 생성한다. 실험을 통해 k-최근접 이웃 모델로 우울 단계를 분류한 결과 약 93%의 정확도를 얻을 수 있었고, 분류된 우울 단계에 따라 가족, 친구 및 사회복지사에게 소셜 네트워크 서비스 에이전트를 통해 알림 메시지를 전송하여 사용자와 보호자 간의 인터랙티브 콘텐츠 서비스를 구현하였다.