• Title/Summary/Keyword: 기계적 변형률

Search Result 259, Processing Time 0.024 seconds

Finite element analysis of tissue differentiation process in fractured bones applied by a composite IM-rod based on a mechano-regulation theory (메카노 규제 이론에 기초한 복합재료 IM-rod가 적용된 골절부의 세포분화과정의 유한요소해석)

  • Son, Dae-Sung;Mehboob, Hassan;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.136-140
    • /
    • 2012
  • This paper describes the bone healing process of fractured long bones such as a tibia applied by composite IM rods using finite element analysis. To simulated tissue differentiation process mechano-regulation theory with a deviatoric strain was implemented and a user's subroutine programmed by a Python code for an iterative calculation was used. To broadly find the appropriate rod modulus for healing bone fractures, composite IM rods were analyzed considering the stacking sequence. To compare mechanical stimulation at fracture gap, two kinds of initial loading conditions were applied. As a result, it was found that the initial loading condition was the most sensitive factor for the healing performance. In case a composite IM rod made of a plain weave carbon fiber/epoxy (WSN3k) had a stacking sequence of $[{\pm}45]_{nT}$, the healing efficiency was the most effective under a initial load of 10%BW.

Measurement of Material Properties of Composites under High Temperature using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 고온용 복합재료의 물성 측정)

  • 강동훈;박상욱;김수현;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.41-47
    • /
    • 2003
  • Composites are widely used for aircraft, satellite and other structures due to its good mechanical and thermal characteristics such as low coefficient of thermal expansion(CTE), heat-resistance, high specific stiffness and specific strength. In order to use composites under condition of high temperature, however, material properties of composites at high temperatures must be measured and verified. In this paper, material properties of T700/Epoxy were measured through tension tests of composite specimens with an embedded FBG sensor in the thermal chamber at the temperatures of RT, $100^{\circ}$, $200^{\circ}$, $300^{\circ}$, $300^{\circ}$. Through the pre-test of an embedded optical fiber, we confirmed the embedding effects of an optical fiber on material properties of the composites. Two kinds of specimens of which stacking sequences are [0/{0}/0]$_{T}$. and [$90_2$/{0}/$90_2$]. were fabricated. From the experimental results, material property changes of composites were successfully shown according to temperatures and we confirmed that fiber Bragg grating sensor is very appropriate to strain measurement of composites under high temperature.

Effect of Specimen Geometry on Bending and Tensile Strength of Material Used in Dissimilar Joints (이종 접합재의 굽힘 및 인장강도에 미치는 시험편 형상의 효과)

  • Hur, Jang-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.341-346
    • /
    • 2010
  • The effect of specimen geometry on the bending and tensile strengths of dissimilar joints ($\beta-Si_3N_4/S45C$) with copper interlayers was evaluated. The average bending strength of specimens with circular cross sections was higher than that of specimens with rectangular cross sections. The crack initiation stress ($\sigma_i$) was successfully determined by the acoustic emission (AE) method and was approximately 60~80% of the bending strength. The residual stresses near the interfaces on the ceramic side were measured by X-ray diffraction before conducting the bending test. The bending strength and the crack initiation stress decreased with an increase in the residual stresses. The effect of the bending strain component was evaluated by the tensile testing; the tensile strength decreased with an increase in the bending strain component and was approximately 80% of the bending strength.

Quantification of Localized Fracture Mechanism of Recycled Aggregate Concrete in Compression using Acoustic Emission Technique (음향방출기법을 이용한 순환골재 콘크리트의 압축파괴 기구의 정량화)

  • Kim, Sun-Woo;Yun, Hyun-Do;Kim, Yun-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.87-94
    • /
    • 2007
  • Reuse of recycled aggregate from demolished concrete structure is beneficial and necessary from the viewpoint of environmental preservation and effective utilization of resources. The most important mechanical properties of recycled aggregate concrete (RAC) are the compressive strength, the tensile and the flexural strengths, the bond strength and the elastic modulus of such concrete. In particular, the stress-strain relation and fracture process of RAC in compression is especially important in theoretical and numerical analysis as well as engineering design of RAC structures. In this paper, to clarify the characteristics of fracture process in RAC, acoustic emission(AE) method is applied to detect micro-cracking in concrete under compression. From AE parameters, it is found that cracking and fracture behaviors in recycled aggregate concrete fairly differ from that of normal and recycled sand concrete.

A Study on Shape Optimization of Impregnated Bit (Impregnated Bit의 형상 최적화에 관한 연구)

  • Youm, Kwang-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.60-66
    • /
    • 2021
  • The core is extracted through drilling and used to evaluate the feasibility of developing mineral resources. To extract the core, a bit is installed in the forefront of the drilling device for drilling. Here, the drill bit receives stress due to direct friction against the ground. In addition, a bit appropriate for the given ground condition should be used due to the possibility of damaging a bit as a result of friction. This paper used a current bit model based on an impregnated bit and analyzed a new bit model that uses a stiffener of similar/disparate materials. The hardness and deflective strength were then evaluated by modeling the shape of impregnated bit through a calculation based on a theoretical formula. Through FEM analysis of the existing model and the new model, the stress and strain calculation results were optimized to minimize the stress and strain with a stress of 1.92 × 107 Pa and a strain of 9.6× 10-5 m/m.

Greenhouse Gas Reduction and Marine Steel Plate Tensile Properties When Using Propylene Flame in the Cutting Process (프로필렌 화염을 이용한 선박용 철판 가공 시 온실가스 감소 효과 및 재료의 인장 특성에 미치는 영향 연구)

  • Kim, Do Hyeon;Kim, Dong Uk;Seo, Hyoung-Seock
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.639-647
    • /
    • 2022
  • The use of flames is essential in cutting, bending, and welding steel during a ship's construction process. While acetylene fuel is commonly used in steel cutting and the manufacturing process in shipyards, the use of propane as an alternative fuel has recently been increasing, due to the lower risk of explosion and propane's relatively low calorific value. However, propane fuel has a relatively slow processing speed and high slag generation frequency, thereby resulting in poor quality. Propylene is another alternative fuel, which has an excellent calorific value. It is expected to gain wider use because of its potential to improve the quality, productivity, and efficiency of steel processing. In this study, the combustion characteristics of propane and propylene fuel during steel plate processing were analyzed and compared. The reduction of greenhouse gases and other harmful gases when using propylene flame was experimentally verified by analyzing the gases emitted during the process. Heat distribution and tensile tests were also performed to investigate the effects of heat input, according to processing fuel used, on the mechanical strength of the marine steel. The results showed that when propylene was used, the temperature was more evenly distributed than when propane fuel was used. Moreover, the mechanical tests showed that when using propylene, there was no decrease in tensile strength, but the strain showed a tendency to decrease. Based on the study results, it is recommended that propylene be used in steel processing and the cutting process in actual shipyards in the future. Additionally, more analysis and supplementary research should be conducted on problems that may occur.

Study on Temperature-Dependent Mechanical Properties of Chloroprene Rubber for Finite Element Analysis of Rubber Seal in an Automatic Mooring System (자동계류시스템 고무 씰 유한요소해석을 위한 고무 소재의 온도별 기계적 특성 연구)

  • Son, Yeonhong;Kim, Myung-Sung;Jang, Hwasup;Kim, Songkil;Kim, Yongjin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.157-163
    • /
    • 2022
  • An automatic mooring system for a ship consists of a vacuum suction pad and a mechanical part, enabling quick and safe mooring of a ship. In the development of a mooring system, the design of a vacuum suction pad is a key to secure enough mooring forces and achieve stable operation of a mooring system. In the vacuum suction pad, properly designing its rubber seal determines the performance of the suction pad. Therefore, it is necessary to appropriately design the rubber seal for maintaining a high-vacuum condition inside the pad as well as achieving its mechanical robustness for long-time use. Finite element analysis for the design of the rubber seal requires the use of an appropriate strain energy function model to accurately simulate mechanical behavior of the rubber seal material. In this study, we conducted simple uniaxial tensile testing of Chloroprene Rubber (CR) to explore the strain energy function model best-fitted to its experimentally measured engineering strain-stress curves depending on various temperature environments. This study elucidates the temperature-dependent mechanical behaviors of CR and will be foundational to design rubber seal for an automatic mooring system under various temperature conditions.

Mechanical Properties of Monodisperse Polymer Particles and Electroless Ni Plated Monodisperse Polymer Particles (단분산 가교고분자 미립자 및 그의 무전해 니켈도금체의 기계적 물성 연구)

  • Kim Dong-Ok;Jin Jeong-Hee;Shon Won-IL;Oh Seok-Heon
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.332-337
    • /
    • 2006
  • Monodisperse polymer particles were prepared via one-step seeded polymerization using PMMA seed particles and HDDA (or EGDMA) as crosslinking monomer. For the study, the effects of 1) the ratio of the absorbed monomer or monomer mixture to the seed polymer particles (swelling ratio), 2) the ratio of EGDMA in absorbed monomer mixture, 3) the dosage of initiator, and 4) electro less Ni plating on the variation of mechanical properties of monodisperse polymer particles, such as recovery rate, K-values, breaking strength and breaking displacement, were investigated by using MCT (micro compression test). It was observed that monomer swelling ratio influenced only breaking strength, but EGDMA ratio in monomer mixture, dosage of initiator and electroless Ni plating affected both K-values and breaking strength.

Analysis of Human Body Injury by Non-penetrating Ballistic Impact Using a Finite Element Model of the Head and Neck (근육 모델이 고려된 두부 및 경추 유한요소모델을 이용한 비관통 피탄 충격에 의한 인체 상해 해석)

  • Kang, Moon Jeong;Jo, Young Nam;Chae, Jeawook;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Ballistic impact on a soldier wearing a helmet can induce fatal injury, even if the helmet is not penetrated. Although studies on this type of injury have been performed, most of them have used an analytical model focused on head injury only. The injury of the neck muscles and cervical vertebrae by non-penetrating ballistic impact affects the survivability of soldiers, despite not inflicting fatal injury to the human body. Therefore, an analytical model of the head and neck muscles are necessary. In this study, an analysis of human body injury using the previously developed head model, as well as a cervical model with muscles, was performed. For the quantitative prediction of injury, the stress, strain, and HIC were compared. The results from the model including the cervical system indicated a lower extent of injury than the results from the model excluding them. The results of head injury were compared with other references for reliability.

Fatigue Characterization of Glass/Polypropylene Composite Bone Plates Locked with an Artificial Tibia under Moisture Environment (인조골에 체결된 유리섬유/폴리프로필렌 복합재료 고정판의 수분 환경 피로 특성)

  • Han, Min-Gu;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.328-333
    • /
    • 2013
  • In this study, bone plate made of glass/polypropylene composite material which was applied to an artificial bone was tested to check the service ability under fatigue loading. To check serviceability of composite bone plates fatigue test was carried out considering changes in the moisture absorption rate, locking position of screws and loading condition. Test results showed that all the tested specimens had the fatigue life more than one million cycles which was much higher fatigue life than the expected value of 650,000 cycles. Screw position was not critical impact on the deformation of the fracture site. In this paper, the mechanical performance of the glass/polypropylene composite was verified by fatigue test under various water absorption conditions, and this result may give useful information on the design of composite bone plate.