DOI QR코드

DOI QR Code

Finite element analysis of tissue differentiation process in fractured bones applied by a composite IM-rod based on a mechano-regulation theory

메카노 규제 이론에 기초한 복합재료 IM-rod가 적용된 골절부의 세포분화과정의 유한요소해석

  • 손대성 (중앙대학교 기계공학부 대학원) ;
  • ;
  • 장승환 (중앙대학교 기계공학부)
  • Published : 2012.10.31

Abstract

This paper describes the bone healing process of fractured long bones such as a tibia applied by composite IM rods using finite element analysis. To simulated tissue differentiation process mechano-regulation theory with a deviatoric strain was implemented and a user's subroutine programmed by a Python code for an iterative calculation was used. To broadly find the appropriate rod modulus for healing bone fractures, composite IM rods were analyzed considering the stacking sequence. To compare mechanical stimulation at fracture gap, two kinds of initial loading conditions were applied. As a result, it was found that the initial loading condition was the most sensitive factor for the healing performance. In case a composite IM rod made of a plain weave carbon fiber/epoxy (WSN3k) had a stacking sequence of $[{\pm}45]_{nT}$, the healing efficiency was the most effective under a initial load of 10%BW.

본 논문에서는 복합재료 IM rod가 적용된 골절부의 세포 분화과정을 모사하기 위해 유한요소해석을 실시하였다. 세포의 골화과정을 해석하기 위해 편향 변형률을 이용한 메카노 규제 이론을 사용하였으며, 반복 계산을 위해 Python 코드를 이용하여 서브루틴을 구현하였다. 치료에 가장 적절한 복합재료 IM rod의 강성을 찾기 위해 직물 탄소섬유/에폭시 복합재료 (WSN3k)의 적층각도를 바꾸어 해석을 실시하였다. 골절부에 가해지는 기계적 자극에 따른 치료효율을 비교하기 위해 두 가지 초기 하중 조건을 적용하였다. 그 결과 치료효율은 강성의 차이보다 하중에 의해 큰 영향을 받았으며, 초기 하중이 몸무게의 10%이고, 적층순서가 $[{\pm}45]_{nT}$일 때 치료효율이 가장 높았다.

Keywords

References

  1. Krettek, C., Schandelmaier, P., Nliclau, T., and Tscherne, H., "Minimally invasive percutaneous plate osteosynthesis (MIPPO) using the DCS in proximal and distal femoral fractures," Injury, Vol. 28, Supplement 1, 1997, pp. A20-30. https://doi.org/10.1016/S0020-1383(97)90112-1
  2. Ji, F., Tong, D., Tang, H., Cai, X., Zhang, Q., Li, J., and Wang, Q., "Minimally invasive percutaneous plate osteosynthesis(MIPPO) technique applied in the treatment of humeral shaft distal fractures through a lateral approach," International Orthopaedics, Vol. 33, No. 2, 2009, pp. 543-7. https://doi.org/10.1007/s00264-008-0522-2
  3. Kim, J.H., and Chang, S.H., "A Basic Design and Characterization on Composite Bone Plate for Bone Fracture Healing," Journal of the Korean Society for Composite Materials, Vol. 20, No. 5, 2007, pp. 7-12.
  4. Kim, S.H., Park, M.G., An, S.T., Cho, S.K., and Chang, S.H., "Finite element analysis of callus generation in fractured bones according to the strain distribution," Journal of the Korean Society for Composite Materials, Vol. 22, No. 3, 2009, pp. 29-34.
  5. Kim, S.H., and Chang, S.H., "Finite element analysis on bio-mechanical behavior of composite bone plate for healing femur fracture considering contact conditions," Journal of the Korean Society for Composite Materials, Vol. 23, No. 1, 2010, pp. 1-7. https://doi.org/10.7234/kscm.2010.23.1.001
  6. Hajek, P.D., Bicknell, H.R., Bronson, W.E., Albright, J.A., and Saha, S., "The use of one compared with two distal screws in the treatment of femoral shaft fractures with interlocking intramedullary nailing. A clinical and biomechanical analysis," Journal of Bone and Joint Surgery-American Volume, Vol. 75, No. 4, 1993, pp. 519-525. https://doi.org/10.2106/00004623-199304000-00007
  7. Lacroix, D., and Prendergast, P.J., "A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading," Journal of Biomechanics, Vol. 35, No. 9, 2002, pp. 1163-71. https://doi.org/10.1016/S0021-9290(02)00086-6
  8. Isaksson, H., Wilson, W., Donkelaar, C.C., Huiskes, R., and Ito, K., "Comparison of biophysical stimuli for mechanoregulation of tissue differentiation during fracture healing," Journal of Biomechanics, Vol. 39, No. 8, 2006, pp. 1507-16. https://doi.org/10.1016/j.jbiomech.2005.01.037
  9. Kim, H.J., Chang, S.H., and Jung, H.J., "The simulation of tissue differentiation at a fracture gap using a mechanoregulation theory dealing with deviatoric strains in the presence of a composite bone plate," Composites Part B-Engineering, Vol. 43, No. 3, 2012, pp. 978-87. https://doi.org/10.1016/j.compositesb.2011.09.011
  10. Cheung, G., Zalzal, P., Bhandari, M., Spelt, J.K., and Papini, M., "Finite element analysis of a femoral retrograde intramedullary nail subject to gait loading," Medical Engineering & Physics, Vol. 26, No. 2, 2004, pp. 93-108. https://doi.org/10.1016/j.medengphy.2003.10.006
  11. Donahue, T.L.H., Hull, M.L., Rashid, M.M., and Jacobs, C.R., "A finite element model of the human knee joint for the study of tibio-femoral contact," Journal of Biomechanical Engineering-Transactions of the Asme, Vol. 124, No. 3, 2002, pp. 273-80. https://doi.org/10.1115/1.1470171
  12. Ramakrishna, S., Mayer, J., Wintermantel, E., and Leong, K.W., "Biomedical applications of polymer-composite materials: a review," Composites Science and Technology, Vol. 61, No. 9, 2001, pp. 1189-224. https://doi.org/10.1016/S0266-3538(00)00241-4
  13. Mow, V.C., and Huiskes, R., Basic orthopaedic biomechanics & mechano-biology, Lippincott Williams & Wilkins, Philadelphia, USA, 2005.