• Title/Summary/Keyword: 기계적 계면거동

Search Result 76, Processing Time 0.024 seconds

Effect of TiCN/WC Ratio on Grain Shape and Grain Growth in the TiCN-WC-Co System (TiCN-WC-Co 계에서 TiCN/WC 비의 변화에 따른 입자모양과 입자 성장)

  • 이보아;강석중;윤덕용;김병기
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.11a
    • /
    • pp.29-29
    • /
    • 2002
  • 공구강 등 산업용 재료로 널리 사용되는 카바이드 계 재료는 입자 크기 및 분포에 따라 기계적 성질이 변화하므로, 이를 제어하고 조절하는 기술에 관하여 많은 연구가 진행되어 왔다. 본 연구에서는 TiCN-WC-Co 복합초경계 에서 소결 공정 및 조성변화에 따른 입자 모양을 관찰하고 이에 따른 업자 성장 거동을 고찰하였다. 일반적으로 입자 조대화 양상과 고상 입자의 모양과는 밀접한 관계가 있다. 각진 입자의 경우에 는 계면이 원자적으로 singular 하여 원자의 홉착이 어렵기 때문에 임계값 이상의 성장 구동력을 받 는 몇몇 입자만 성장하는 비정상 입자 성장이 일어날 수 있다. 반면에 계면이 rough한 퉁큰 엽자의 경우에는 원자 홉착에 필요한 구동력이 존재하지 않아 성장 구동력을 받는 모든 입자들이 성장하기 때문에 정상 입자 성장을 하게 된다. 이와 같이 입자 모양에 따른 입자 성장 거동은 전체 미세구조를 결정하게 되며, 이에 따른 물리 화학적 물성을 변화시킨다. 이러한 입자 성장 원리를 적용하 면 복합초경계 (TiCN-WC-Co)에서도 입자성장이 억제되고 치밀한 소결체를 제조할 수 있을 것이다. 본 실험에서는 평균입도가 각각 0.1, 1.33, 2$\mu\textrm{m}$인 TiCN, WC, Co 분말을 사용하여 $((I00_{-x)}TiCN+_xWC)-30Co$ (wt%) 조성에서 TiCN/WC 비를 변화시키면서 업자 모양과 입자성장 거동을 관찰하였다. 청량된 분말은 WC 초경 볼로 밀렁하고, 건조한 후, 100 mesh 체로 조립화 하였다. 이 분말을 100 MPa의 압력으로 냉간정수압성형 하고 $10^{-2}$ torr의 진공분위기의 graphite f furnace에서 carbon black으로 packing 하여 액상형성 온도 이상에서 소결하였다. 소결된 시편은 경면 연마하여 주사전자현미경으로 미세 조직을 관찰하였다. TiCN-30Co 조성 시편은 corner-round 모양의 입자 모양으로 소결 시간 증가에 따라 빠른 입자 성장을 나타내었다 .(7STiCN+2SWC)-30Co 조성 시변의 경우 일반적으로 보고된 바와 같이 core/shell 구조를 나타내었으며, core는 TiC-rich 상이었고, shell은 (Ti,W)(C,N) 복합 탄화물 상이었다. WC 함량이 중가함에 따라 입자의 corner-round 영역이 증가하였으며 (SOTiCN-SOWC)-30Co 조성 근처에서는 거의 둥근 형태의 입자 모양을 나타내었다. 또한 TiCN - 30Co 조성 시편에 비하여 WC가 첨가된 시펀들은 작은 평균입자크기를 나타내었다. 본 연구의 결과는 shell 영역 조성 변화는 계면에너지 이방성과 기지상 내의 펑형 입자 모양을 변화시키고 나아가 입자 성장 속도 에도 영향을 미친다는 것을 보여준다.

  • PDF

Studies on Cure Behavior and Rheological Properties of Tetrafunctional Epoxy/Biodegradable MAP Blends (4관능성 에폭시/생분해성 MAP 블렌드의 경화 거동 및 유변학적 특성에 관한 연구)

  • 박수진;김승학;이재락;김봉섭;홍성원
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.767-777
    • /
    • 2002
  • In this work, biodegradable modified aliphatic polyester (MAP) in tetrafunctional epoxy (4EP) resin was investigated in terms of cure kinetics, thermal stabilities, rheological properties, and mechanical interfacial properties. DSC results of the blends show that the cure activation energies (E$\_$a/) were increased in 10 wt% of MAP compared with neat 4EP, due to the increasing intermolecular interaction between 4EP and MAP. The decomposed activation energies (E$\_$t/) derived from Coats-Redfern method, were increased within the 10∼30 wt% composition range of MAP contents, resulting from increasing the cross-linking density of the blend system. Rheological properties of the blend system were investigated under isothermal condition using a rheometer. Cross-linking activation energies (E$\_$c/) were determined from the Arrhenius equation based on gel time and curing temperature. As a result, the E$\_$c/ showed a similar behavior with E$\_$a/. The fracture toughness (K$\_$IC/) of the mechanical interfacial properties was discussed in semi-IPN behaviors of the casting specimen.

Delamination Prediction of Semiconductor Packages through Finite Element Analysis Reflecting Moisture Absorption and Desorption according to the Temperature and Relative Humidity (유한요소 해석을 통해 온도와 상대습도에 따른 수분 흡습 및 탈습을 반영한 반도체 패키지 구조의 박리 예측)

  • Um, Hui-Jin;Hwang, Yeon-Taek;Kim, Hak-sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.37-42
    • /
    • 2022
  • Recently, the semiconductor package structures are becoming thinner and more complex. As the thickness decrease, interfacial delamination due to material mismatch can be further maximized, so the reliability of interface is a critical issue in industry field. Especially, the polymers, which are widely used in semiconductor packaging, are significantly affected by the temperature and moisture. Therefore, in this study, the delamination prediction at the interface of package structure was performed through finite element analysis considering the moisture absorption and desorption under the various temperature conditions. The material properties such as diffusivity and saturated moisture content were obtained from moisture absorption test. The hygro-swelling coefficients of each material were analyzed through TMA and TGA after the moisture absorption. The micro-shear test was conducted to evaluate the adhesion strength of each interface at various temperatures considering the moisture effect. The finite element analysis of interfacial delamination was performed that considers both deformation due to temperature and moisture absorption. Consequently, the interfacial delamination was successfully predicted in consideration of the in-situ moisture desorption and temperature behavior during the reflow process.

A Visualization Study of Liquid Spreading on Micro/nano Textured Surfaces with Synchrotron X-ray Imaging (방사광 X-선 영상법을 활용한 마이크로/나노 구조 표면에서의 액체 퍼짐 가시화 연구)

  • Kwak, Ho Jae;Yu, Dong In;Doh, Seungwoo;Park, Hyun Sun;Kim, Moo Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.531-536
    • /
    • 2017
  • Nano/micro technology is currently applied to improve solid surface wettability, with recent research studies indicating that nanostructures can improve surface wettability in the hydrophilic direction, and liquid spreading (propagation) is generated by capillary wicking. The majority of the existing research involves qualitative analysis of the spreading phenomena, owing to the difficulty in conducting small-scale analysis (nanostructures). In this study, the droplet interfacial behavior on silicon surfaces with micro/nano/micro-nano structures is experimentally investigated. The interfacial behavior is directly visualized using synchrotron X-ray imaging (side view). The spreading phenomena occur on structured surfaces, and the liquid interface behaviors on the surfaces differ. The liquid film thickness is uniform during spreading on the microstructured surface, but not on the nano case which shows a gentle slope. These combined spreading shapes were observed on a micro-nano structured surface, and liquid propagation was enhanced when the micro- and nano-structures are combined.

A Study on Friction-induced Surface Fracture Behaviors of Carboxylic Acid Modified Styrenic Thermoplastic Elastomer as Additives (첨가제에 따른 변성 스티렌계 열가소성 엘라스토머의 마찰에 의한 표면 파괴 거동 연구)

  • Jeon, Jun-Ha;Park, Sang-Min;Lee, Jin- Hyok;Um, Gi-Yong
    • Journal of Adhesion and Interface
    • /
    • v.16 no.3
    • /
    • pp.95-100
    • /
    • 2015
  • In this work, we observed the effect of silica, zinc oxide, zinc ion coated silica on carboxylic acid modified styrenic thermoplastic elastomer (m-TPS) film for friction-induced surface fracture. m-TPS film added general silica showed poor mechanical properties, anti-abrasion and friction-induced surface fracture, caused by strong filler-filler interaction of silica. In case of m-TPS films added zinc oxide or zinc ion coated silica, mechanical properties, anti-abrasion and friction-induced surface fracture were improved due to forming ionic cluster between carboxylic acid group of m-TPS and zinc ion. Ionic cluster were confirmed by FT-IR analysis that observed zinc carboxylated group stretch peak at $1550{\sim}1650cm^{-1}$.

Verification of the Experimental Correlation for Dynamic Contact Angle by Visualizing Interfaces of Water-Glycerol Mixture Slug in a Hydrophobic Microtube via Synchrotron X-ray Imaging (방사광 X-선 영상법을 이용한 소수성 마이크로 관 내 물-글리세롤 혼합물 슬러그 계면 가시화를 통한 동적접촉각 상관식 검증)

  • Jang, Jin Gyu;Kim, Young Hyun;Kim, Kyoung Joon;Lee, Junghoon;Lee, Yeon Won;Yu, Dong In
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.145-150
    • /
    • 2022
  • Dynamic contact angles have investigated by numerous researchers for understanding interfacial behavior at moving contact lines However, due to limitation of visualization techniques, previous experiments for dynamic contact angles have conducted limitedly in hydrophilic capillary tubes based on visible ray. Recently, there is continuous need for research on dynamic contact angles in hydrophobic capillary tubes on various research and industrial fields. Therefore, in this study, we measure the dynamic contact angles of water-glycerol mixture slug in hydrophobic microtubes using synchrotron X-ray imaging. Based on the visualized data, we verified the previous experimental correlations for dynamic contact angles.

Morphology and Swelling Behaviors of PVA/Gelatin Blend Membranes Prepared Under High Electric Field (고전장하에서 제조된 PVA/Gelatin 블렌드막의 구조와 팽윤거동)

  • Huh, Yang-Il;Yun, Hyung-Ku
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.563-567
    • /
    • 2006
  • Poly(vinyl alcohol) (PVA) and gelatin (GEL) blend membranes were prepared by solution casting method under a high electric field. SEM observation of the membrane showed that gelatin rich domains were elongated and oriented to the direction of the applied electric field in PVA matrix. This can be attributed to the electrostatic emulsifying effects due to a reduction in interfacial tension. In addition, it was observed through WAXD and swelling measurements that the degree of crystallinity of membranes increased with applied electric field strength. This may be interpreted to be caused by the orientation effect of GEL domains in the blend membrane, and the self-annealing effect due to some heat generated from high electric field during casting.

Impact Modification Effects of SEBS-g-MA on Polyamide 6/Maleated Polypropylene Blends (폴리아미드6/반응성 포리프로필렌 블렌드계에서 SEBS-g-MA의 충격개선효과)

  • Koh, Jae Song;Yoon, Tae Sung;Jung, In Kwon;Choi, Hyeong Ki;Jang, Yoon Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1141-1146
    • /
    • 1999
  • Melt blend of PA6/PP-g-MA system containing SEBS-g-MA as a compatible impact modifier was prepared to investigate the change of mechanical properties and morphologies. The tensile strength slightly decreased, but the elongation at break increased with increasing content of SEBS-g-MA in the blend. Also the notched izod impact strength increased with increasing the content of PP-g-MA and SEBS-g-MA. It is attributed to improved compatibilization and interfacial adhesion by reaction of the amide of PA6 with maleic anhydride of SEBS-g-MA and PP-g-MA. The result of dynamic mechanical analysis(DMA) showed a typical behavior of the compatibilization in the polymer blends. Finally, in the phase structure observed by the use of SEM, we confirmed improvement of the compatibilization and interfacial adhesion with increasing the content of SEBS-g-MA and PP-g-MA.

  • PDF

Acoustic Emission Characteristics and Fracture Behaviors of GFRP-Aluminum Honeycomb Hybrid Laminates under Compressive and Bending Loads (GFRP-알루미늄 하니컴 하이브리드 적층판의 압축 및 굽힘 파괴거동과 음향방출해석)

  • Lee, Ki-Ho;Gu, Ja-Uk;Choi, Nak-Sam
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.23-31
    • /
    • 2009
  • This paper investigated acoustic emission (AE) characteristics in association with various fracture processes of glass fiber reinforced plastic skin/ aluminum honeycomb core (GF-AH) hybrid composites under compressive and bending loads. Various failure modes such as skin layer fracture, skin/core interfacial fracture, and local plastic yield buckling and cell wall adhesive fracture occurring in the honeycomb cell wall were classified through the fracture identification in association with the AE frequency and amplitude analysis. The distribution of the event-rate in which it has a high amplitude showed a procedure of cell wall adhesive fracture, skin/core interfacial debonding and fiber breakage, whereas distribution of different peak frequencies indicated the plastic deformation of aluminum cell wall and the friction between honeycomb walls. Consequently, the fracture behaviors of GF-AH hybrid composites could be characterized through a nondestructive evaluation employing the AE technique.

Effect of Coupling Agent, Methylene Diisocyanate, in the Blending of Poly(methyl methacrylate)-Modified Starch and Styrene-Butadiene Rubber (폴리(메틸 메타크릴레이트)-개질된 전분과 스티렌-부타디엔 고무의 혼합에서 커플링제 메틸렌 디이소시아네이트의 효과)

  • Li, Mei-Chun;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.49 no.2
    • /
    • pp.117-126
    • /
    • 2014
  • Methylene diisocyanate (MDI) was investigated as a novel interfacial modifier to enhance the performances of poly(methyl methacrylate)-modified starch/styrene-butadiene rubber (PMMA-modified starch/SBR) composites. Owing to the formation urethane linkage on one side and ${\pi}-{\pi}$ adhesion on the other side, MDI acted as an intermediated linkage role in the PMMA-modified starch/SBR interfaces, which was evidenced by the morphological, mechanical, dynamic mechanical and thermal decomposition studies. As a result, the presence of MDI significantly improved the mechanical properties and thermal stability of PMMA-modified starch/SBR composites. In addition, the effect of starch concentration on the various performances of the resulted MDI/PMMA-modified starch/SBR composites, such as morphology, vulcanization characteristics, mechanical properties, toluene swelling behavior, and thermal stability were investigated and discussed in detail. The obtained MDI/PMMA-modified starch/SBR composites exhibited superior mechanical properties to carbon black/SBR (CB/SBR) composites, demonstrating the potential use of the renewable starch as a substitute for CB in the rubber compounds.