• Title/Summary/Keyword: 기계적 강성

Search Result 424, Processing Time 0.025 seconds

Evaluation of mechanical properties and springback for embossed aluminum sheet - part I (엠보싱 알루미늄 판재의 기계적특성과 스프링백 평가 (제1보))

  • Kim, Young-Suk;Cho, Jun-Haeng;Do, Van-Cuong;Shin, Dong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.921-926
    • /
    • 2015
  • Embossed aluminum sheets were been used in heat insulation purpose for automative exhaust parts because of increasing their surface areas and stiffness reinforcement. However, there are many restrictions because of high rate of wrinkle occurrence on press working. We have performed the tensile and bending tests for embossed sheets to clarity its mechanical properties and springback characteristics. Embossed aluminum sheets showed a different flow stress after plastic yielding due to flattening the embossed cone shape. Above all, yield stress of parallel embossed specimen decreases while its diagonal one increases and the decrease of young's modulus in the embossed sheets contributes to the increase of springback amount.

A study of express bus entrance system for wheelchair users (고속버스용 휠체어 탑승 전용 승강구 개조부 연구)

  • Lee, Yong-Woo;Ha, Sung-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2019
  • In the rapidly aging society, the number of wheelchair users is increasing steadily. On the other hand, it is almost impossible for a disabled person using a wheelchair to use express buses. Therefore, it is necessary to develop an express bus that can secure the rights of wheelchair users. For these special types of express buses, it is required to develop a special entrance and lift system. The development of a wheelchair entrance system for the express buses requires design modification, retrofit, and reinforcement of the bus frame. This study evaluated the structural integrity of an entrance system for wheelchair users using a finite element method. Torsional stiffness and modal analysis were performed through structural analysis. Through sensitivity analysis, optimization was performed to reduce the weight of the frame. These results on the wheelchair entrance system are expected to be utilized in the vehicle modification and welfare industries.

Flame Retardant Property of PU by the Addition of Phosphorous Containing Polyurethane Oligomers (폴리우레탄을 인계화합물로 해중합한 올리고머의 난연성)

  • Jung, Sunyoung;Kang, Sungku;Cho, Ilsung;Koh, Sungho;Kim, Younhee;Chung, Yeongjin;Kim, Sangbum
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.376-380
    • /
    • 2007
  • Used polyurethane (PU) was chemically degraded by the treatment with flame retardants such as tris(1,3-chloro-2-propyl) phosphate (TCPP), triethyl phosphate (TEP), and trimethyl phosphate (TMP). Analysis of FT-IR and P-NMR showed that the degraded products (DEP) contained oligourethanes. Rigid polyurethane foam was produced using the DEP as flame retardants. The flammability and thermal stability of recycled rigid polyurethane were investigated. The mechanical properties such as compressive strength of recycled polyurethane were also studied. The recycled polyurethane reduced flammability and enhanced thermal stability over intrinsic polyurethane. Mechanical strength of recycled polyurethane also shows as high as that of intrinsic polyurethane. In order to evaluate flame retardant properties of the recycled polyurethane foams with various amounts of DEP, heat release rate (HRR) of the foam was measured by cone calorimeter. Scanning electron micrograph of recycled PU showed a uniform cell morphology as a intrinsic PU.

Mechanical Properties and Stress-Strain Model of Re-Bars Coldly Bent and Straightened (굽힌 후 편 철근의 기계적 성질과 응력-변형률 모델)

  • Chun, Sung-Chul;Tak, So-Young;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.195-204
    • /
    • 2012
  • In the construction of high-rise buildings, bent re-bars are manually straightened to connect slabs to core-walls, which are usually cast before floor structures. During cold bending and straightening of re-bars, plastic deformation causing work hardening, Bauschinger effect and aging hardening is unavoidable. Tensile tests of coldly bent and straightened re-bars were conducted with test parameters of grade, diameter, and bend radius of re-bars as well as age between bending and straightening. Test results showed that proportional limits were lower and strain hardening occurred without yield plateaus. Inside and outside of re-bars with compression and tension deformations, respectively, during bending showed lower yield points due to Bauschinger effect and no yield plateaus due to work hardening, respectively. When re-bar grade was higher, yield point became significantly lower where Grade 400 re-bars had yield strengths lower than specified yield strength of 400 MPa. Because the surface of re-bar has higher strength than the core of re-bar, Bauschinger effect was more obvious for higher-grade re-bars. When age between bending and straightening was greater, yield strength increased and elongation decreased (i.e. embrittlement occurs). Using measured data, stress-strain relationship for straightened re-bars was developed based on Ramberg-Osgood model, which can be used to evaluate stiffness of joints when straightened re-bars are applied.

Failure Mode and Failure Strength of Homogeneous Metals & Dissimilar Metals Bonded Single Lap-Shear Joints (동종금속 및 이종금속 단일 겹침 접착 시편의 파손모드 및 파손강도에 관한 연구)

  • Park, Beom Chul;Chun, Heoung-Jae;Park, Jong Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this paper, the experimental study and finite elements analysis were conducted on homogeneous and dissimilar metals single lap-shear bonded joints to investigate the factor that affect the joint failure load. It was found that factors which have the significant effects on the failure load of the joint was stiffness of the adherends. And from experimental results, it can be confirmed that the failure load increases linearly with overlap length increases. And the failure load of dissimilar metal joints is approximately 1KN(10~17%) larger than homogeneous metal joints. In order to confirm this phenomenon, the stress distribution and strain distribution of the specimens were analyzed through the finite element analysis. The difference between homogeneous metals joints and dissimilar metals joints is that stress and strain in adhesive are concentrated at the end of the overlap zone close to aluminium which has lower rigidity than aluminium in case of dissimilar metals joints. From high rigidity of steel, the stress concentration in bonds are decreased and it cause increase of the failure strength at dissimilar metal joints.

Nonlinear Subgrade Reaction Analysis of the Soil-Pile System for Mooring Dolphin Structures (계류식 돌핀구조물에 대한 지반-말뚝계의 비선형 지반반력 해석)

  • 오세붕;이진학;이상순;김동수;정태영
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.3-16
    • /
    • 1999
  • The objective of BMP( Barge Mounted Plant) project is to construct plants on mooring floating structures at sea. To analyze the pile behavior under mooring dolphins, generally, axial or lateral behavior of soil-pile system is evaluated by using a nonlinear subgrade reaction method which models the pile as a structural element and the soil as series of nonlinear springs along the depth. As a result, load-displacement curves at pile head can be solved by finite difference method and the equivalent stiffness of bottom boundaries of dolphin structure is evaluated. In this study off-shore site investigation was performed on the marine area of Koje Island and axial and lateral load transfer curves of the ground were modeled with depth. The subgrade reaction analysis was performed for piles under axial or lateral loadings, and the required penetration depth and section of the pile were determined. Subsequently, the spring boundaries under the dolphin structure could be modeled from the calculated load-displacement curve and then the dynamic response of the dolphin structure was analyzed reasonably by considering ground conditions. The analysis considering the stiffness of the soil-pile system has resulted in larger displacement amplitudes than those for rigid foundations. Furthermore, moment distributions of the casing were dependent on the soil-pile system so that deformable foundation induces the larger moment of top section of casing and the smaller moment of pile head.

  • PDF

Cyclic Behavior of Wall-Slab Joints with Lap Splices of Coldly Straightened Re-bars and with Mechanical Splices (굽힌 후 편 철근의 겹침 이음 및 기계적 이음을 갖는 벽-슬래브 접합부의 반복하중에 대한 거동)

  • Chun, Sung-Chul;Lee, Jin-Gon;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • Steel Plate for Rebar Connection was recently developed to splice rebars in delayed slab-wall joints in high-rise building, slurry wall-slab joints, temporary openings, etc. It consists of several couplers and a thin steel plate with shear key. Cyclic loading tests on slab-wall joints were conducted to verify structural behavior of the joints having Steel Plate for Rebar Connection. For comparison, joints with Rebend Connection and without splices were also tested. The joints with Steel Plate for Rebar Connection showed typical flexural behavior in the sequence of tension re-bar yielding, sufficient flexural deformation, crushing of compression concrete, and compression rebar buckling. However, the joints with Rebend Connection had more bond cracks in slabs faces and spalling in side cover-concrete, even though elastic behavior of the joints was similar to that of the joints with Steel Plate for Re-bar Connection. Consequently, the joints with Rebend Connection had less strengths and deformation capacities than the joints with Steel Plate for Re-bar Connection. In addition, stiffness of the joints with Rebend Connection degraded more rapidly than the other joints as cyclic loads were applied. This may be caused by low elastic modulus of re-straightened rebars and restraightening of kinked bar. For two types of diameters (13mm and 16mm) and two types of grades (SD300 and SD400) of rebars, the joints with Steel Plate for Rebar Connection had higher strength than nominal strength calculated from actual material properties. On the contrary, strengths of the joints with Rebend Connection decreased as bar diameter increased and as grade becames higher. Therefore, Rebend Connection should be used with caution in design and construction.

A Computational Modeling Reflecting Static and Dynamic Characteristics of LM Bearings for Machine Tools (공작기계 LM 베어링의 정동적 특성을 반영하는 전산 모델링)

  • Kim, Hye-Yeon;Jeong, Jong-Kyu;Won, Jong-Jin;Jeong, Jay-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1062-1069
    • /
    • 2012
  • This paper suggests a computational modeling to reflect static/dynamic characteristics of LM bearings. A theoretical study for modeling LM bearings is elucidated by using the Hertz contact theory, the Lagrange's equation of motion, normal mode analysis and a calculation of equivalent moment center. The complex geometry of LM bearings is replaced by a simplified model with eight springs only. The suggested model reflects static and dynamic characteristics of LM bearings without any consideration for the shape of the bed or stages on the LM bearings. The modal experimental results are compared to the simulation results with the suggested computational modeling. The difference between the experiments and simulation is calculated less than 8%.

Effect of Ultrasonic Waves on Fiber Orientation in CFRP Laminated Composites

  • Park, Je-Woong;Kweon, Young-Sub;Im, Kwang-Hee;Hsu, David;Kim, Sun-Kyu;Yang, In-Young
    • Journal of Korea Foundry Society
    • /
    • v.27 no.6
    • /
    • pp.255-257
    • /
    • 2007
  • 최근에는 탄소섬유복합재료(CFRP)는 우주 및 민간 항공산업분야에 널리 활용이 되고 있는 실정이다. CFRP 복합재는 적층구성에 따라 기계물성치 및 강성에 크게 영향이 미치므로 가장 대표적인 직교이방성 적층재의 적층배향을 비파괴 탐상하는 것은 중요하다. 본 연구에서는 CFRP 적층재의 섬유배향에 가장 민감한 초음파 전단파를 활용하기 위해 2개의 종파 초음탐촉자를 이용하는 새로운 기법을 제안하였다. 또한 초음파 전단파를 발생하기 위해서는 탐촉자 밑면에 접촉매질인 태운꿀을 사용하는데 초음파시험하는 도중에 물성치중에 하나인 즉 점성이 상당히 변하게 된다. 이러한 문제를 해결하기 위해 2개의 종파용 초음파탐촉자를 이용해 전단파를 발생시킴으로써 접촉매질문제를 상당히 경감할 수 있는 것으로 나타났으며 여기에서 발생한 전단파가 CFRP 복합적층판의 섬유배향에 매우 민감함을 알 수 있었다.

An Experimental Dynamic Analysis of Machine Foundation through Random Vibration Technique (무작위 진동 기법을 이용한 기계기초의 진동해석에 관한 실험적 연구)

  • Kim, Su-Il;Min, Deok-Gi;U, Je-Yun
    • Geotechnical Engineering
    • /
    • v.2 no.2
    • /
    • pp.29-36
    • /
    • 1986
  • In this study, a random vibration technique to anaiyze the vertical vibration of rigid circular footings on sand whose material properties are not previously determind is proposed. Total of 11 circular model footings varing mass ratio and radius are constructed for the vibration experim eat and the elastic half space is represented by compacted sand layer From the random vibration experiments, it is found that the technique suggested in this study gives more accurate prediction of circular footing behavior under vertical vibration than the simplified analog which assumes the subsoils as elastic half space. The predicted resonant frequene iris agree very well with the measured values from the slnusoidal vibration experiments. The ratio of the predicted resonant amplitudes to the measured values vary between 0.5 and 1,35 for the site used for the vibration experiments in this study.

  • PDF