• Title/Summary/Keyword: 기계적 강성

Search Result 422, Processing Time 0.028 seconds

Temperature-Dependent Stress Analysis of Rotating Functionally Graded Material Gas Turbine Blade Considering Operating Temperature and Ceramic Particle Size (운전온도와 세라믹 입자크기를 고려한 회전하는 경사기능성 가스터빈 블레이드의 응력해석)

  • Lee, Ki Bok;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.193-203
    • /
    • 2014
  • Temperature-dependent stress analysis and heat transfer analysis of a rotating gas turbine blade made of functionally graded materials (FGMs) are presented considering turbine operating temperature and ceramic particle size. The material properties of functionally graded materials are assumed to vary continuously and smoothly across the thickness of the thin-walled blade. For obtaining system stiffness reflecting these characteristics, the one-dimensional heat transfer equation is applied along the thickness of the thin-walled blade for determining the temperature distribution. Using the results of the temperature analysis, the equations of motion of a rotating blade are derived with hybrid deformation variable modeling method along with the Rayleigh-Ritz assumed mode methods. The validity of the derived rotating blade model is evaluated by comparing its transient responses and temperature distribution with the results obtained using a commercial finite element code. The maximum tensile stress with operating speed and gradient index are obtained. Furthermore, the gradient index that minimizes blade temperature was investigated.

Forced Vibration Modeling of Rail Considering Shear Deformation and Moving Magnetic Load (전단변형과 시간변화 이동자기력을 고려한 레일의 강제진동모델링)

  • Kim, Jun Soo;Kim, Seong Jong;Lee, Hyuk;Ha, Sung Kyu;Lee, Young-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1547-1557
    • /
    • 2013
  • A forced vibration model of a rail system was established using the Timoshenko beam theory to determine the dynamic response of a rail under time-varying load considering the damping effect and stiffness of the elastic foundation. By using a Fourier series and a numerical method, the critical velocity and dynamic response of the rail were obtained. The forced vibration model was verified by using FEM and Euler beam theory. The permanent deformation of the rail was predicted based on the forced vibration model. The permanent deformation and wear were observed through the experiment. Parametric studies were then conducted to investigate the effect of five design factors, i.e., rail cross-section shape, rail material density, rail material stiffness, containment stiffness, and damping coefficient between rail and containment, on four performance indices of the rail, i.e., critical velocity, maximum deflection, maximum longitudinal stress, and maximum shear stress.

Study on Elevator Induced Structural Vibration Reduction Performance Using Polymer Concrete (폴리머 콘크리트를 이용한 엘리베이터 기인 구조 진동저감 성능 연구)

  • Yeom, Jihye;Kim, Jeong-Jin;Park, Junhong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.90-94
    • /
    • 2021
  • With the increased interest on quiescent place for residential place, the noise generation from facilities needs to be minimized. One important noise source include sounds from operation of elevators. The elevator operates between floors and generates significantly annoying sounds to the nearby living spaces. It is recognized as the significant contributor inducing noise annoyance to residents. Elevator is supported to the building structure at several locations for movements between floors. In this study, the vibration reduction by use of polymer concrete on the support location was demonstrated. By measuring and comparing the vibration generation when supported on cement and polymer concrete, the noise reduction performance was evaluated. The polymer concrete was made in the form of being inserted into the wall that imitates the hoistway. The impact vibration was induced to the bracket and vibration transfer magnitude was measured. The damping ratio was evaluated through normalization and curve fitting of transient response, and comparison was performed for each resin mixing ratio. By use of polymer concrete, it was possible to reduce the vibration generation in an effect manner without sacrifice on the structural rigidity.

A Study on the Changes of Blood Pressure Measurement Factors Before and After Heart Treatment (심장 치료 전후의 혈압 측정 인자의 변화에 관한 연구)

  • Choi, Wonsuk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.2
    • /
    • pp.51-56
    • /
    • 2021
  • The brachial systolic blood pressure and pulse pressure are the predictors of cardiovascular disease in individuals over 50 years of age. As the stiffness increases, the reflex amplitude and pressure in the late systole increase, resulting in an increase in left ventricular load and myocardial oxygen demand. Therefore, it is necessary to study how stiffness affects blood pressure. In this study, the blood pressure pulse waves were measured before and after taking the drug, and the blood pressure pulse wave was measured before and after myocardial heart transplantation in patients with heart failure. The correlation between R, L, and C components of the Windkessel model was estimated by increasing blood pressure. As a result of modeling the parameters of the Windkessel model using the curve fitting method, the increase in blood pressure and decrease in systolic rise time were due to the increase in the L component in the RLC Windkessel model. Among the various mechanical characteristics of blood vessels, the most important parameter affecting high BP waveform is the inertance.

A Study on Structural Test and Derivation of Standard Finite Element Model for Composite Vehicle Structures of Automated People Mover (자동무인경전철 복합재 차체 구조물의 구조 시험 및 해석적 검증에 의한 유한요소 모델 도출 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Kim, Dae-Hwan
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.1-7
    • /
    • 2009
  • The vehicle structure of Automated People Mover(APM) made of aluminum honeycomb sandwich with WR580INF4000 glass-fabric epoxy laminate facesheets was evaluated by structural test and finite element analysis. The test of the vehicle structure was conducted according to JIS E 7105. The structural integrity of vehicle structure was evaluated by stress, deflection and natural frequency obtained from dial-gauge and acceleration sensor. And the proposed finite element models were compared with the results of structural test. The results of finite element analysis showed good agreement with those of structural test. Also, in order to improve the stiffness of vehicle structure, the modified underframe model with reinforced side sill was proposed in design stage. The composite vehicle structures with modified underframe model had the improved structural stiffness about 44%.

The Effect of 30Hz Whole Body Vibration Exercise on the Thickness and Mechanical Properties of the Erector Spinae (30Hz 전신 진동운동이 척추세움근의 두께와 기계적 속성에 미치는 영향)

  • Park, Jae-Cheol;Kim, Yong-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.45-51
    • /
    • 2021
  • The purpose of this study was to investigate the effect of applying whole body vibration exercise at 30 Hz on the thickness and mechanical properties of the erector spinae. The study population included 24 adults (11 male and 13 female) in the N region. The subjects were divided into two groups, a 30Hz whole body vibration exercise(WG, n=12) and an LSG(12 subjects). Changes in the thickness and mechanical properties of the erector spinae were analyzed before the exercises and after four and eight weeks of exercises using a two-way repeated analysis of variance with a statistical significance level of α=0.05. When there was an interaction between the groups and measurement times, post hoc analyses were conducted at a statistical significance level of α=0.01. The thickness, frequency, stiffness and strain of the erector spinae muscles were significantly different in each time period and in the interaction between time period and the group (P<0.05), and recovery was significantly different only in each time period (P<0.05). Thus, 30Hz whole body vibration exercise had a positive effect on the thickness and mechanical properties of the erector spinae. The results of this preliminary study suggest that whole body vibration exercise may find a place as a lumbar stabilization exercise in clinical practice in the future.

Self-Sensing and Interfacial Evaluation of Ni Nanowire/Polymer Composites Using Electro-Macromechanical Technique (전기적 미세역학적 시험법을 이용한 Ni nanowire강화 고분자 복합재료의 자체 감지능 및 계면 물성평가)

  • Kim, Sung-Ju;Yoon, Dong-Jin;Hansen George;DeVries K. Lawrence;Park, Joung-Man
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.20-27
    • /
    • 2006
  • Self-sensing and interfacial evaluation of Ni nanowire/polymer composites were investigated using electro-macromechanical technique, which can be used fur a feasible sensing measurement on tensile and compressive loading/consequent unloading, temperature, and humidity. Mechanical properties of Ni nanowire with different aspect ratio and adding contents in either epoxy or silicone composites were measured indirectly using electro-pullout test under uniform and non-uniform cyclic loadings. Comparing apparent modulus with the conventional mechanical tensile modulus of Ni nanowire/epoxy composites, the trends were consistent with each other. Ni nanowire/epoxy composites showed the sensing response on humidity and temperature. Self-sensing on applied tensile and compressive loading/unloading was also responded for Ni nanowire/silicone composites via electrical contact resistivity showing the opposite trend between tension and compression. It can be due to the different electrically-interconnecting mechanisms of dispersed Ni nanowires embedded in silicone matrix.

전기설비의 절연열화 진단 기법

  • 곽희로;임기조;구자윤;강성화
    • 전기의세계
    • /
    • v.46 no.8
    • /
    • pp.34-40
    • /
    • 1997
  • 케이블 시스템의 사고는 예방 진단에 근거한 정확한 진단으로 피할 수 있으며, 잔여수명 예측 기술은 진단 방법의 체계적인 적용에 의해 향상될 수 있다. 따라서 본 고에서는 케이블 시스템 진단 방법의 체계적인 개발을 위해서 60 kV급 이상의 종이 절연 혹은 고분자 절연 전력 케이블과 그 접속 자재에 대해서만 진단 방법을 개략적으로 소개만하고 있으며 수트리에 관련된 열화, 절연체의 열화를 제외한 모든 열화현상과 DC 케이블에 대해서는 언급을 하지 않았다. 회전기 고체절연체의 열화에 의해 야기되는 변화는 회전기 진동을 발생 시키고, 진동은 기계에 심각한 손상을 발생시킨다. 회전기의 절연열화 진단은 유전손실, 유전율, 음향 등의 측정/분석으로 가능하고 적용 방법은 on-line/off-line으로 가능하다. 절연 시스템의 열화정도 판정은 회전기의 적절한 보수시기의 판단을 가능하게 하여 유지 보수비의 절감 및 회전기의 수명연장을 가능하게 할 것이다.

  • PDF

Development of User-customized Device Intelligent Character using IoT-based Lifelog data in Hyper-Connected Society (초연결사회에서 IoT 기반의 라이프로그 데이터를 활용한 사용자 맞춤형 디바이스 지능형 캐릭터 개발)

  • Seong, Ki Hun;Kim, Jung Woo;Sul, Sang Hun;Kang, Sung Pil;Choi, Jae Boong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.21-31
    • /
    • 2018
  • In Hyper-Connected Society, IoT-based Lifelog data is used throughout the Internet and is an important component of customized services that reflect user requirements. Also, Users are using social network services to easily express their interests and feelings, and various life log data are being accumulated. In this paper, Intelligent characters using IoT based lifelog data have been developed and qualitative/quantitative data are collected and analyzed in order to systematically grasp emotions of users. For this, qualitative data through the social network service used by the user and quantitative data through the wearable device are collected. The collected data is verified for reliability by comparison with the persona through esnography. In the future, more intelligent characters will be developed to collect more user life log data to ensure data reliability and reduce errors in the analysis process to provide personalized services.

Structural Characteristic Analysis of an Ultra-Precision Machine for Machining Large-Surface Micro-Features (초정밀 대면적 미세 형상 가공기의 구조 특성 해석)

  • Kim, Seok-ll;Lee, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1173-1179
    • /
    • 2007
  • In recent years, research to machine large-surface micro-features has become important because of the light guide panel of a large-scale liquid crystal display and the bipolar plate of a high-capacity proton exchange membrane fuel cell. In this study, in order to realize the systematic design technology and performance improvements of an ultra-precision machine for machining the large-surface micro-features, a structural characteristic analysis was performed using its virtual prototype. The prototype consisted of gantry-type frame, hydrostatic feed mechanisms, linear motors, brushless DC servo motor, counterbalance mechanism, and so on. The loop stiffness was estimated from the relative displacement between the tool post and C-axis table, which was caused by a cutting force. Especially, the causes of structural stiffness deterioration were identified through the structural deformation analysis of sub-models.