• Title/Summary/Keyword: 기계적하중

Search Result 428, Processing Time 0.024 seconds

Comparative analysis of various corrosive environmental conditions for NiTi rotary files (니켈티타늄 파일의 부식에 영향을 미치는 다양한 환경 조건 비교)

  • Yum, Ji-Wan;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.4
    • /
    • pp.377-388
    • /
    • 2008
  • The aim of the present study is to compare the corrosion tendency using two kinds of NiTi files in the various environmental conditions through the visual examination and electrochemical analysis. ProTaper Universal S2, 21 mm (Dentsply Maillefer, Ballaigues, Switzerland) and Hero 642, 0.06 tapers, size 25, 21 mm (Micromega, Besancon, France) rotary instruments were tested. The instruments were randomly divided into eighteen groups (n = 5) by the immersion temperature, the type of solution, the brand of NiTi rotary instrument and the presence of mechanical loading. Each file was examined at various magnifications using Scanning Electron Microscope (JEOL, Akishima, Tokyo, Japan) equipped with energy dispersive X-ray microanalysis (EDX). EDX was used to determine the components of the endodontic file alloy in corroded and noncorroded areas. The corrosion resistance of unused and used NiTi files after repeated uses in the human teeth was evaluated electrochemically by potentiodynamic polarization test using a potentiostat (Applied Corrosion Monitoring, Cark-in-Cartmel, UK). Solution temperature and chloride ion concentration may affect on passivity of NiTi files. Under the conditions of this in vitro study, the corrosion resistance is slightly increased after clinical use.

Analysis of Mechanical Properties and Stress Crack Behavior of HOPE Geomembranes by Laboratory Installation Damage Test (실내 시공시 손상시험에 의한 HDPE 지오멤브레인의 기계적 특성 및 응력균열거동 해석)

  • Khan, Belas Ahmed;Park, Ju-Hee;Kim, Sung-Hee;Chang, Yong-Chai;Oh, Tae-Hwan;Lyoo, Won-Seok;Jeon, Han-Yong
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.203-209
    • /
    • 2011
  • Two smooth and textured surfaced HDPE geomembranes (GMs) were cut into dumbbell shape and notched where depth of the notch produced a ligament thickness of 10% to 90% of the nominal thickness with the specimen at 10% interval. A series of laboratory simulation test for installation damage were carried out at different loading cycles on HDPE GMs in accordance with ISO 10722 test method and the effect of number of loading cycle on installation damage was compared. It was found that yield stress and elongation at yield point decreased gradually as the notch depth was increased. Both installation damaged and notched, GMs were used to understand stress crack behavior and this behavior was observed through NCTL test at $50{\pm}1^{\circ}C$ at different yield stresses immerging in pH 4 and pH 12 buffer solutions. Over 35% tensile load, GMs became vulnerable to stress cracking. Both damaged and notched GMs showed the same trend. Especially, notched GMs showed less strength than installation damaged GMs at every stress cracking test condition.

Crack Growth Analysis due to PWSCC in Dissimilar Metal Butt Weld for Reactor Piping Considering Hydrostatic and Normal Operating Conditions (수압시험 및 정상운전 하중을 고려한 원자로 배관 이종금속 맞대기 용접부 응력부식균열 성장 해석)

  • Lee, Hwee-Sueng;Huh, Nam-Su;Lee, Seung-Gun;Park, Heung-Bae;Lee, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.47-54
    • /
    • 2013
  • This study investigates the crack growth behavior due to primary water stress corrosion cracking (PWSCC) in the dissimilar metal butt weld of a reactor piping using Alloy 82/182. First, detailed finite element stress analyses were performed to predict the stress distribution of the dissimilar metal butt weld in which the hydrostatic and the normal operating loads as well as the weld residual stresses were considered to evaluate the stress redistribution due to mechanical loadings. Based on the stress distributions along the wall thickness of the dissimilar metal butt weld, the crack growth behavior of the postulated axial and circumferential cracks were predicted, from which the crack growth diagram due to PWSCC was proposed. The present results can be applied to predict the crack growth rate in the dissimilar metal butt weld of reactor piping due to PWSCC.

Analysis of the Contact Pressure Distribution and Kinetics of Knee Implant Using the Simulator (Simulator를 이용한 인공무릎관절 접촉면의 압력분포 및 운동성 분석)

  • 이문규;김종민;김동민;최귀원
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.363-367
    • /
    • 2003
  • Contact area and pressure are important factors which directly influence a life of knee implants. Since implant's mechanical functions should be experimentally evaluated for clinical use, many studies using a knee simulator and a pressure sensor system have been conducted. However it has not been reported that the contact pressure's distribution of a knee implant motion was estimated in real-time during a gate cycle. Therefore. the objective of this study was to analyze the contact pressure distribution for the motion of a joint using the knee simulator and I-scan sensor system. For this purpose, we developed a force-controlled dynamic knee simulator to evaluate the mechanical performance of artificial knee joint. This simulator includes a function of a soft tissue and has a 4-degree-of-freedom to represent an axial compressive load and a flexion angle. As axial compressive force and a flexion angle of the femoral component can be controlled by PC program. The pressure is also measured from I-scan system and simulator to visualize the pressure distribution on the joint contact surfaces under loading condition during walking cycle. The compressive loading curve was the major cause for the contact pressure distribution and its center move in a cycle as to a flexion angie. In conclusion, this system can be used to evaluate to the geometric interaction of femoral and tibial design due to a measured mechanical function such as a contact pressure, contact area and a motion of a loading center.

Stiffness Enhancement of Piecewise Integrated Composite Robot Arm using Machine Learning (머신 러닝을 이용한 PIC 로봇 암 강성 향상에 대한 연구)

  • Ji, Seungmin;Ham, Seokwoo;Cheon, Seong S.
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.303-308
    • /
    • 2022
  • PIC (Piecewise Integrated Composite) is a new concept for designing a composite structure with mosaically assigning various types of stacking sequences in order to improve mechanical properties of laminated composites. Also, machine learning is a sub-category of artificial intelligence, that refers to the process by which computers develop the ability to continuously learn from and make predictions based on data, then make adjustments without further programming. In the present study, the tapered box beam type PIC robot arm for carrying and transferring wide and thin LCD display was designed based on the machine learning in order to increase structural stiffness. Essential training data were collected from the reference elements, which were intentionally designated elements among finite element models, during preliminary FE analysis. Additionally, triaxiality values for each finite element were obtained for judging the dominant external loading type, such as tensile, compressive or shear. Training and evaluating machine learning model were conducted using the training data and loading types of elements were predicted in case the level accuracy was fulfilled. Three types of stacking sequences, which were to be known as robust toward specific loading types, were mosaically assigned to the PIC robot arm. Henceforth, the bending type FE analysis was carried out and its result claimed that the PIC robot arm showed increased stiffness compared to conventional uni-stacking sequence type composite robot arm.

A Design and Performance Evaluation of Semi-active MR Damper for the Smart Control of Construction Structures (건설구조물의 스마트 제어를 위한 준능동 MR 감쇠기의 설계 및 성능평가)

  • Heo, Gwang-Hee;Jeon, Joon-Ryong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.165-171
    • /
    • 2009
  • This research developed two semi-active MR dampers whose gaps in the orifice area were different from each other, and evaluated their damping performance by loading tests. The Damping performance of MR dampers characteristically depends on various factors like their material and mechanical ones, but most importantly on the size of gap in the orifice area. For this research, we designed the orifice gaps of two dampers as each 1.0mm and 2.0mm, both with the 80mm outer diameter of the orifice. We also designed two loading test sets with different input currents, and acquired different control ability from them. The acquired test results were analyzed and evaluated with their maximum and minimum damping force and also their dynamic range from the force-displacement hysteresis loops and the force-input current relationship curve. This research clearly proved how the damping performance of control devices depends on the gap effect, and also presented a possibility that the two dampers developed in this research could be used for the smart control of construction structures by effectively adapting the input current and the number of coil turns.

Papers : Three - dimensional assumed strain solid element for piezoelectric actuator/sensor analysis (3 차원 가정변형률 솔리드 요소를 이용한 압전 작동기/감지기 해석)

  • Jo, Byeong-Chan;Lee, Sang-Gi;Park, Hun-Cheol;Yun, Gwang-Jun;Gu, Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.67-74
    • /
    • 2002
  • The paper deals with a fully assumed strain soild element that can be used for modeling of thin sensors and actuators. To solve fully coupled field problems, the eledtric potential is regarded as a nodal degree of freedom in addition to three translations in an eighteen node assumed strain soild element. Therefore, the induced electric potential can be calculated for a prescribed load and the actuation displacement can be computed for an input voltage. Since the assumed strain solid element can alleviate locking. A finite element code is developed based on the formulation and typical numerical examples are solved for code validation. Using the code, we have conducted parametric study for THUNDER actuator. It is found that a particular combination of materials for layer curvature of THUNDER improves the actuation displacement.

Nondestructive Characterization of Degradation of EPDM Rubber for Automotive Radiator Hoses (자동차 냉각기 호스용 EPDM고무의 노화에 대한 비파괴 특성평가)

  • Kwak, Seung-Bum;Choi, Nak-Sam;Choi, Youn-Joung;Shin, Sei-Moon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.368-376
    • /
    • 2005
  • Coolant rubber hoses for automobile radiators can be degraded and thus failed due to the influence of contacting stresses of air and coolant liquid under thermal and mechanical loadings. In this study, for EPDM(ethylene-propylene diene monomer) rubber conventionally used as a radiator hose material the aging behaviors of the skin part due to thermo-oxidative and electro-chemical stresses were nondestructively evaluated. Through the thermo-oxidative aging test, it was shown that the surface hardness IRHD(International Rubber Hardness Degrees) of the rubber increased with a considerable reduction of failure strain. On account of the penetration of coolant liquid into the skin part the weight of rubber specimens degraded by electro-chemical degradation(ECD) test increased, whereas their. failure strain and IRHD hardness decreased largely. The penetration of coolant liquid seemed to induce some changes in inner structure and micro hardness distribution of the rubbers. Consequently, EPDM rubbers degraded by thermo-oxidative aging and ECD could be characterized nondestructively by micro-hardness and chemical structure analysis methods.

Damage Analysis for Last-Stage Blade of Low-Pressure Turbine (저압터빈 최종단 블레이드 손상해석)

  • Song, Gee Wook;Choi, Woo Sung;Kim, Wanjae;Jung, Nam Gun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.12
    • /
    • pp.1153-1157
    • /
    • 2013
  • A steam turbine blade is one of the core parts in a power plant. It transforms steam energy into mechanical energy. It is installed on the rim of a rotor disk. Many failure cases have been reported at the final stage blades of a low-pressure (LP) turbine that is cyclically loaded by centrifugal force because of the repeated startups of the turbine. Therefore, to ensure the safety of an LP steam turbine blade, it is necessary to investigate the fatigue strength and life. In this study, the low cycle fatigue life of an LP steam turbine blade is evaluated based on actual damage analysis. To determine the crack initiation life of the final stage of a steam turbine, Neuber's rule is applied to elastic stresses by the finite element method to calculate the true strain amplitude. It is observed that the expected life and actual number of starts/stops of the blade were well matched.

Application of Continuous Indentation Technique for Reliability Evaluation in Power Plant Facilities (발전설비 주요배관 신뢰도 확보를 위한 연속압입시험 적용)

  • Park, Sang-Ki;Ahn, Yeon-Shik;Jung, Gye-Jo;Cho, Yong-Sang;Choi, Yeol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.158-162
    • /
    • 2004
  • Reliability of welded structures in power plant facilities is very important, and their reliability evaluation requires exact materials properties. But, the conventional PQR (Procedure Qualification Record) can hardly reflect the real material properties in the field because the test is only done on specimens with simulated welding. Therefore, a continuous indentation technique is proposed in this study for simple and non-destructive testing of in-field structures. This test measures the indentation load-depth curve during indentation and analyzes the mechanical properties such as the yield strength, tensile strength and work hardening index. This technique has been applied to evaluate the tensile properties of the weldment in the main steam pipe and hot reheater pipe in power plants under construction and in operation.